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ABSTRACT

ROCHA, M. Development of enriched isogeometric Boundary Element Method
formulations for the fracture and fatigue analysis in three-dimensional
structures. 2025. 188 p. Thesis (Ph.D.) - Sdo Carlos School of Engineering, University of
Sao Paulo, Sao Carlos, 2025.

The main objective of this doctoral thesis is the development of enriched formulations
based on the Isogeometric Boundary Element Method (IGABEM) for three-dimensional
fracture and fatigue analysis. The IGABEM is a suitable numerical approach due to
its boundary-only discretisation, which allows the direct use of Computer-Aided Design
(CAD) models, eliminating the need for the mesh generation task. This study utilises
the Dual IGABEM to accommodate coincident geometries for opposing crack surfaces,
and inherits the well-known advantages of the Non-Uniform Rational B-Splines (NURBS)
basis as other isogeometric implementations. This study proposes an enrichment with the
Heaviside function to represent the displacement discontinuity at external faces intersected
by cracks. This proposition eliminates the need for conformal meshes along the intersection.
Additional degrees of freedom emerge from this strategy, and since this study applies a
collocation-based IGABEM, the supplementary equations do not arise naturally with the
enrichment proposition. In this sense, two different strategies of supplementary equations
recover a well-posed system. Then, another proposition involves the Williams’ solution
as enrichment functions to the displacement approximation. This function possesses
the asymptotic behaviour typical of fracture mechanics problems, which is not part of
the NURBS space. This expansion incorporates the displacement discontinuity when
applied at external faces crossed by cracks. Additionally, enriching crack surfaces using
this method enables the direct extraction of the Stress Intensity Factors (SIFs) as they
become system unknowns. This eliminates the need for post-processing tasks, such as the
J-integral. Moreover, introducing the /r behaviour at the displacements approximation
results in higher convergence rates when compared to standard IGABEM or Lagrangian
BEM approaches. This study also performs a fatigue crack propagation analysis with the
proposed eXtended Isogeometric Boundary Element Method (XIGABEM) formulations.
The Williams’ solution enrichment directly obtains the SIFs and the Heaviside function
represents the displacement discontinuity modelling. The Paris-Erdogan Law determines
the fatigue life assessment, while two different crack growth criteria define the crack
advancement: the hoop stress and the Schollmann criterion. Additionally, this study
proposes a new algorithm to define the new crack front position during the propagation
analysis based on a least squares minimisation. Then, it becomes possible to represent
changes in the crack front curvature during the crack growth. While the principal focus
of this thesis is the development of enriched formulations of the IGABEM, incorporating

trimmed surfaces into the method is a preliminary research into expanding the scope



of its geometric representation. This enables the numerical analysis of more complex
geometries without rebuilding the original CAD model, which it allows for the study of
industrial components. Results have demonstrated the viability of the trimmed surfaces in
the IGABEM formulation, although for limited cases. Its generalisation requires further
investigation about implementation details and suitable collocation schemes. In addition,
several numerical applications demonstrate the robustness of the new XIGABEM for three-
dimensional fracture and fatigue analysis. The results using the XIGABEM formulation
agree with the reference solutions from analytical expressions or those from the literature.
Moreover, the numerical results attest to the accuracy of the XIGABEM models with
fewer degrees of freedom compared to the standard IGABEM or BEM.

Keywords: Boundary Element Method; enriched formulations; isogeometric analysis;

crack growth; fatigue analysis.



RESUMO

ROCHA, M. Desenvolvimento de formulac6es enriquecidas do Método dos
Elementos de Contorno isogeométrico para a analise da fratura e fadiga de
estruturas tridimensionais. 2025. 188 p. Tese (Doutorado) - Sao Carlos School of
Engineering, University of Sao Paulo, Sao Carlos, 2025.

O principal objetivo desta tese de doutorado é o desenvolvimento de formulacoes en-
riquecidas baseadas no Método dos Elementos de Contorno Isogeométrico (MECIG) para
a andlise da fratura e fadiga de sélidos tridimensionais. O MECIG se apresenta como
uma abordagem numérica adequada devido a sua discretizacao exclusiva do contorno, o
que permite a aplicacao direta de modelos gerados via Computer-Aided Design (CAD),
o que elimina a necessidade por geracao de malha. Este estudo utiliza a formulacao
dual do MECIG para acomodar geometrias coincidentes das faces de fissura opostas, e
também incorpora as vantagens conhecidas das fungdes Non-Uniform Rational B-Splines
(NURBS) na implementagao isogeométrica. Este estudo propoe o enriquecimento com a
funcao Heaviside para representar a descontinuidade em deslocamento na face externa
intersectada por fissuras. Esta proposi¢ao elimina a necessidade de malhas conformes
ao longo da linha de interseccao. Graus de liberdade adicionais surgem dessa estratégia,
e uma vez que este estudo aplica o MECIG por colocacao, as equagoes adicionais nao
surgem naturalmente com a proposta de enriquecimento. Assim, duas estratégias diferentes
para equagoes suplementares recuperam o sistema algébrico bem posto. Em seguida,
outra proposi¢ao envolve a expansao de Williams como func¢ao de enriquecimento para a
aproximacao dos deslocamentos. Esta funcao possui o comportamento assintético tipico de
problemas da mecanica da fratura, e que nao fazem parte do espaco de aproximacao das
fungoes NURBS. Essa expansao incorpora a descontinuidade de deslocamentos quando
aplicada a faces externas cortadas por fissuras. Adicionalmente, o enriquecimento de
faces de fissura com este método permite a extracao direta dos Fatores de Intensidade
de Tensao (FITs), dado que eles se tornam incégnitas do sistema. Esse enriquecimento
elimina a necessidade de etapas de pds-processamento, como Integral J. Destaca-se que
a introdugdo do comportamento de /r na aproximacao dos deslocamentos resulta em
maiores taxas de convergéncia quando comparado com o MECIG convencional ou com o
MEC Lagrangiano. Este estudo também executa a analise de propagacao de fissuras por
fadiga com a formulacao proposta do Método dos Elementos de Contorno Isogeométrico
Estendido (MECIGE) O enriquecimento via solu¢ao de Williams obtém diretamente os
FITs e a funcao Heaviside representa a modelagem da descontinuidade de deslocamentos.
A Lei de Paris-Erdogan determina a vida 1til a fadiga, enquanto que dois critérios de
propagacao de fissuras definem o avanco da frente: a maxima tensao circunferencial e

o critério de Schollmann. Adicionalmente, este estudo propde um novo algoritmo para



definicao da posicao da nova frente de fissura durante a andlise de propagacao baseada
numa minimizagdo por minimos quadrados. Com isso, torna-se possivel representar mu-
dancas na curvatura da frente da fissura durante a propagagao das fissuras. Enquanto o
foco principal desta tese é o desenvolvimento de formulagoes enriquecidas do MECIG, a
incorporacao de superficies aparadas ao método é um estudo preliminar com énfase em
expandir o escopo das suas representacoes geométricas. Isso permite a andlise numérica
de geometrias mais complexas sem reconstruir o modelo CAD original, o que possibilita
o estudo de componentes industriais. Os resultados demonstraram a viabilidade do uso
das superficies aparadas na formulacao do MECIG, embora para casos limitados. Sua
generalizagao envolve investigacoes a respeito de detalhes de implementacao e esquemas
de colocacao adequados. Adicionalmente, diversos exemplos numéricos demonstram a
robustez da nova formulacao do MECIGE para andlise da fratura e fadiga de compo-
nentes tridimensionais. Os resultados com uso do MECIGE estao em concordancia com
resultados de referéncia obtidos por expressoes analiticas ou por resultados da literatura.
Destaca-se ainda que os resultados atestam a precisdo dos modelos do MECIGE com uso
de menos graus de liberdade quando comparados com as formulagdes do MECIG ou do

MEC Lagrangiano.

Palavras-chave: Método dos Elementos de Contorno; formulagoes enriquecidas; analise

isogeométrica; propagacao de fissuras; analise de fadiga.
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1 INTRODUCTION

This chapter presents the initial considerations of this Ph.D. research. Section 1.1
presents the scope and the main motivation of this study, while section 1.2 outlines the
objectives to be accomplished. Section 1.3 presents the methodology applied to achieve the
objectives of this Ph.D. and finally, the outline of this thesis is presented in section 1.4.

1.1 Scope and motivation

Understanding the collapse behaviour of solids is crucial to ensuring the proper
performance of engineering components across various industrial sectors in modern society.
In addition, preventing these unintended scenarios mitigates the high cost of failure,
whether in terms of material losses or human lives. In this context, research in structural
engineering focuses on developing theories that accurately represent the failure of solids.
These theories ultimately predict and prevent failures during the design and inspection

phases.

Fracture mechanics is a suitable approach between the existing theories to represent
the mechanical behavior of solid near failure. This field assumes that the governing
mechanism of collapse results from the presence of physical discontinuities, known as
cracks, and their growth. In this theory, the mechanical analysis involves evaluating
the influence of cracks in their discrete form within the solid’s geometry. Therefore,
fracture mechanics enables the consistent incorporation of cracks, the crack propagation

phenomenon, and its effects on the mechanical behaviour of the solid.

In studying crack behaviour, Linear Elastic Fracture Mechanics (LEFM) provides a
method of assessment for problems in which the fracture process zone (FPZ) is negligible.
The assumption that the plastic region arising at a crack tip is small is often valid for
brittle materials, hydraulic fracture, and for linear fatigue life cycle analysis, for instance.
The crack stability criteria in the LEFM demand the computation of Stress Intensity
Factors (SIFs) that characterise the complexity of the crack tip stress field. The SIFs define
when the crack propagation occurs, and also is crucial part to define the crack propagation
direction. Thus, their precise computation is an essential task in the analysis of a cracked

component.

The failure of components and structures due to fatigue crack propagation is
a significant concern in engineering, as it can occur under loading conditions below
the ultimate bearing capacity. Examples such as the Liberty ships (Williams; Ellinger,
1949), multiple derailments in the 19th century, and the Aloha Flight 243 (National
Transportation Safety Board, 1989) illustrate the dangers of fatigue crack propagation in
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structural systems, underscoring the importance of their accurate prediction. In fracture
mechanics, LEFM is valid to this failure mechanism, as the FPZ is negligible in fatigue
life cycle analysis. Experimental observations of high-cycle fatigue reveal a relationship
between crack growth rate and the number of loading cycles. Specifically, the Paris-Erdogan
Law applies concepts from LEFM to relate the crack growth rate to SIFs. This allows
for life cycle analysis of engineering components and their maintenance by assessing the

current crack length during an inspection.

The need to comprehend the structural response of these components leads to
theories that describe the corresponding mechanical problem. In this approach, the geom-
etry, supports, loading conditions, and the material response determine the mechanical
fields of the solid. To this end, partial differential equations relate these characteristics
to the displacements, strains, and stresses. However, obtaining an analytical solution to
these equations is a burdensome task, or even impractical, depending on the complexity of
the solid’s mechanical characteristics. To overcome these limitations, numerical methods

provide a viable approach for determining the response of structural mechanics problems.

Numerical methods apply an algebraic treatment to a differential equation to
establish a systematic procedure that yields an approximate solution. Consequently, this
approach determines the displacements, stress and strain fields of a mechanical analysis,
associating them with a finite number of degrees of freedom. This strategy expresses
the mathematical representation of the problem in terms of the degrees of freedom. In
addition, the geometric description involves parametric discretisation, eliminating the
limitations associated with complex geometries. Specific mechanical models integrated
into numerical methods accurately represent nonlinear boundary conditions and material
responses, leading to an iterative solution process. Therefore, numerical methods are
crucial for analysing structural components, as they enable the mechanical modelling of
real-life engineering problems. In this context, some relevant numerical approaches merit
attention: the Finite Element Method (FEM), the Generalised/eXtended Finite Element
Method (G/XFEM), and the Boundary Element Method (BEM), as well as theories such
as the peridynamics and the phase-field modelling.

The Finite Element Method (FEM) discretises the entire solid into nodes and
elements. The equilibrium equations for the domain are discretised using the finite ele-
ment formulation, incorporating the mechanical properties of each element. Applying the
boundary conditions to the algebraic system yields the unknown displacement coefficients,
while the mechanical fields are obtained through interpolating the nodal responses. This
method has been widely successful in numerous engineering problems, particularly in
elastostatics. Additionally, its application with techniques that incorporate physical and
geometric nonlinearities is another advantage of the method. Several studies have used the

FEM for the fatigue analysis of three-dimensional components (Lin; Smith, 1999a; Lin;
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Smith, 1999b; Schollmann; Fulland; Richard, 2003; Ural et al., 2005).

However, the FEM for fracture mechanics problems has its limitations. The first
issue arises from the singular nature of the stresses at the crack front, necessitating a fine
mesh for accurate representation. Another disadvantage occurs in the crack propagation
analysis, which demands a re-meshing task at each propagation step. Given these drawbacks,
the G/XFEM emerges as a robust improvement of the FEM by enriching the displacement
field to incorporate known a priori mechanical behaviour, overcoming these limitations.
The introduction of the Williams solution (Oden; Duarte, 1996) and the discontinuous
(Heaviside) (Moés; Dolbow; Belytschko, 1999) functions in the approximation space of the
two-dimensional G/XFEM allows the crack to exist and propagate in a geometry completely
independently of the FEM mesh, as demonstrated in the seminal work of Sukumar et
al. (2000) for three-dimensional analysis. Based on these strategies, several applications
of the G/XFEM were successful for fracture mechanics problems, such as in dynamic
crack propagation (Duarte et al., 2001), higher order functions in G/XFEM (Laborde
et al., 2005), crack initiation (Areias; Belytschko, 2005), among others (Duflot, 2008;
Rabczuk; Bordas; Zi, 2010; Gupta; Duarte, 2014; Talebi; Silani; Rabczuk, 2015). Moreover,
G/XFEM obtains optimal convergence in LEFM problems in both 2-D (Laborde et al.,
2005; Béchet et al., 2005; Gupta et al., 2013; Sanchez-Rivadeneira; Duarte, 2019; Bento;
Proenga; Duarte, 2022) and 3-D (Sanchez-Rivadeneira et al., 2020; Sanchez-Rivadeneira;
Duarte, 2020) applications. In addition, the G/XFEM is successful in representing 3-D
fatigue propagation (Shi et al., 2010; Rannou et al., 2010; Pereira; Duarte; Jiao, 2010;
Pathak; Singh; Singh, 2013; Garzon et al., 2014; O’Hara et al., 2016; Bergara et al., 2017).
However, it is important to use techniques such as these with caution because of the
consequent ill-conditioning in the stiffness matrix caused by the enrichment contributions,

which can compromise solution accuracy if not suitably treated.

Alternative numerical approaches have recently arise to successfully circumvent
the problems of the FEM, such as peridynamics (Silling et al., 2007; Liu; Hong, 2012;
Breitenfeld, 2014; Sarego et al., 2016; Hu; Madenci, 2017; Jung; Seok, 2017; Wang et
al., 2018; Nguyen; Oterkus; Oterkus, 2021) and phase-field models (Miehe; Hofacker;
Welschinger, 2010; Ambati; Gerasimov; Lorenzis, 2015; Molnar; Gravouil, 2017; Lo et al.,
2019; Mesgarnejad; Imanian; Karma, 2019; Kristensen; Martinez-Paneda, 2020; Carrara et
al., 2020; Ding et al., 2024) for fracture and fatigue modelling. The comparison between
these two methods performed by Diehl et al. (2022) highlights as advantages of both
methods: ability to capture crack initiation, the dismissal of an additional criteria to
describe crack growth and their applicability in multi-field fracture. While peridynamics
presents an attractive approach in terms of capturing dynamic effects such as crack
branching, it fails to capture some of the important physics, for example the propagation
speed of an elastic wave. Moreover, the peridynamics approach can allow mechanical effects

to propagate too quickly through media since mechanical interactions are instantaneous
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over a finite horizon. In addition, these two methods are computationally expensive and,
as a plausible consequence, there are few three-dimensional researches based on these two

approaches.

An alternative method to domain-based methods is the BEM, which requires a
boundary-only discretisation of the solid under analysis. This characteristic reduces the
mesh dimension by one order, simplifying all mesh-related tasks. In three-dimensional
problems, a parametrisation of the external surface is sufficient. Additionally, this signifi-
cantly reduces the number of degrees of freedom compared to FEM due to the dimensional
reduction. Furthermore, internal fields are determined using boundary integral equations
in the post-processing step, rather than being interpolated from the nodal solution as in
FEM. Therefore, internal displacements, strains, and stresses can be accurately obtained,
provided the boundary response is sufficiently precise. Particularly, the Dual BEM for-
mulation for fracture mechanics applies two linearly independent boundary equations,
the Displacement Boundary Integral Equation (Somigliana, 1885) and its derivative, the
Traction Boundary Integra Equation (Hong; Chen, 1988) at opposite crack faces to result in
the Dual BEM (Portela; Aliabadi; Rooke, 1992). Due to the aforementioned characteristics,
the BEM has been successfully explored for two-dimensional crack problems (Portela;
Aliabadi; Rooke, 1993; Saleh; Aliabadi, 1995; Leonel; Venturini, 2010a; Price; Trevelyan,
2014; Li et al., 2024), and also for three-dimensional applications (Mi; Aliabadi, 1992; Mi;
Aliabadi, 1994; Cisilino; Aliabadi, 1999; Carter; Wawrzynek; Ingraffea, 2000; Yang; Mall;
Ravi-Chandar, 2001; Cisilino; Aliabadi, 2004; Kolk; Kuhn, 2006; Cordeiro; Leonel, 2019;
Feng et al., 2020). However, there are some strong singularities and hyper-singularities
that demand semi-analytical treatment, as presented in Guiggiani and Gigante (1990) and

Guiggiani et al. (1992) for three-dimensional elasticity problems.

The advantages of BEM over FEM in fracture mechanics problems stem directly
from the absence of a domain mesh. Firstly, the singular nature of the stress field near the
crack front does not demand a fine mesh as it does in FEM. In addition, crack propagation
is simplified, as the crack does not intersect any pre-existing volume mesh during the
analysis. However, when the crack intersects the external boundary in three-dimensional
analyses, a specific treatment is required during crack growth. In this situation, BEM

requires re-meshing, though it remains simpler than in FEM.

The standard BEM formulation utilises Lagrange polynomials to approximate the
geometry and mechanical fields. However, this parametrisation requires a large number of
elements for curved surfaces, as standard polynomials have limited approximation capacity.
Additionally, representing high gradients in numerical responses can be impractical with
lower-order Lagrange functions, compromising the overall solution quality. To address
these limitations, adopting an alternative set of basis functions in BEM can enhance the

method’s robustness by improving both geometry representation and numerical accuracy.
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Among the available basis functions for interpolating geometry and mechanical
fields, B-Splines, T-Splines, and especially Non-Uniform Rational B-Splines (NURBS)
are well-suited for BEM for several reasons. Their primary advantage is their use as the
geometric parametrisation in Computer-Aided Design (CAD) models, which are widely
used in industry for three-dimensional modeling of engineering components, such as hooks
and gears. Thus, importing these models into a boundary-only method that employs
the same basis functions as the CAD model eliminates the need for mesh generation.
This simultaneous use of basis functions for geometry and approximation fields, as in
the CAD model, defines Isogeometric Analysis (IGA) (Hughes; Cottrell; Bazilevs, 2005).
NURBS and T-Spline basis functions offer another advantage: as rational functions,
they can exactly represent curved surfaces such as spheres and toroids. This results in
a reduction in the number of parameters required for geometric parametrisation, and
consequently, a reduction in the total number of degrees of freedom. Consequently, IGA-
based formulations achieves higher accuracy with fewer degrees of freedom compared to the
standard counterparts. Several authors have investigated the outcomes of the IGA coupled
with the FEM (Bazilevs et al., 2006b; Cottrell; Hughes; Reali, 2007; Bazilevs et al., 2010),
and its application to various engineering problems, such as fluid-structure interaction
(Bazilevs et al., 2008; Bazilevs et al., 2006a), topology optimisation (Wall; Frenzel; Cyron,
2008), phase-field modelling (Borden et al., 2014; Kiendl et al., 2016; Nguyen-Thanh et
al., 2022) and the eXtended IGA (XIGA) approach (Benson et al., 2010; Luycker et al.,
2011; Verhoosel et al., 2011; Ghorashi; Valizadeh; Mohammadi, 2012; Ghorashi et al.,
2015; Nguyen-Thanh et al., 2015; Fathi; Chen; Borst, 2020; Fathi; Borst, 2021; Fathi et
al., 2022) demonstrate the robustness of using IGA basis functions on Finite Element
procedures. Additionally, collocation-based methods such as collocation-BEM exhibit
improved robustness in IGA because the collocation points lie exactly on the boundary
rather than on an approximation of it. Therefore, the substitution of the Lagrangian basis
functions into NURBS results in the Isogeometric Boundary Element Method (IGABEM).
The IGABEM started with the work of Politis et al. (2009) for two dimensional potential
problems; and it was extended to 2-D linear elasticity problems by Simpson et al. (2012)
and Simpson et al. (2013). Subsequently, the method demonstrated its robustness in a
plethora of engineering problems, such as shape optimisation (Li; Qian, 2011; Sun et al.,
2018), fluid mechanics (Heltai; Arroyo; DeSimone, 2014), acoustics (Coox et al., 2017;
Chen et al., 2018; Chen et al., 2019; Shaaban et al., 2020; Wu; Dong; Yang, 2020), and
heat transfer (An et al., 2018; Zang et al., 2024).

Three-dimensional IGABEM for elastostatic analysis has been an emerging research
topic, beginning with the use of unstructured T-Splines as basis functions by Scott et al.
(2013), and followed by Lian, Simpson and Bordas (2013), Gu et al. (2015), Beer et al.
(2017), Li et al. (2018), and Peres et al. (2024). Moreover, Peng et al. (2017a) pioneered the

three-dimensional IGABEM formulation for linear elastic fracture mechanics and fatigue
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propagation, focusing on cracks embedded in an infinite medium, while Cordeiro and
Leonel (2018) applied the 3-D IGABEM to cracked engineering components. Subsequently,
other studies (Sun; Dong, 2021; Sun; Dong, 2023; He; Peng; Ding, 2023) explored the
advantages of the 3-D IGABEM formulation in crack growth analysis. However, the
standard formulation induces non-physical displacements at the crack front, compromising
both the convergence rate and displacement field accuracy. Additionally, in these studies,
numerical modelling of cracks requires mesh alignment between the external boundary and
the crack to properly represent the displacement discontinuity in this region. Then, this
Ph.D. thesis addresses both issues through the enriched formulation of the 3-D IGABEM.

The use of enrichment functions in BEM is incipient, starting with Simpson and
Trevelyan (2011b) and Simpson and Trevelyan (2011a) for two-dimensional applications.
These studies applied the Partition of Unity concept to enrich the displacement field
using the Williams solution-based strategy. This leads to accurate SIF solutions even
with coarse models, outperforming standard BEM formulations. In addition, SIFs are
incorporated into the solution vector, eliminating the need for post-processing tasks, such
as J-integral and M-integral, for isotropic (Alatawi; Trevelyan, 2015) and anisotropic
(Hattori; Alatawi; Trevelyan, 2017) media. Furthermore, the Heaviside enrichment function
proposed by Andrade and Leonel (2020) in eXtended BEM (XBEM) eliminates the need
for re-meshing when cracks intersect the external boundary in 2-D problems. Evidently,
this intersection occurs between a point and a line, simplifying the re-meshing procedure.
However, in three-dimensional problems, a line-surface intersection significantly increases
the complexity of this enrichment function, as detailed in the present study. Moreover, the
only study on 3D-XBEM (Alatawi, 2016) enables the direct extraction of SIFs using the
Williams solution-based enrichment scheme at crack surfaces, where only planar cracks
are analysed. Therefore, the development of enrichment functions for three-dimensional
extended BEM formulations represents a novel contribution and is the main objective of

the present work.

While enrichment strategies in the BEM framework have effectively enhanced
the method, their use within IGABEM remains emergent, with few studies exploring
this coupling. In acoustics, Peake, Trevelyan and Coates (2013) and Peake, Trevelyan
and Coates (2015) pioneered the expansion of approximation fields, employing NURBS
functions for 2-D and 3-D problems, respectively. Shaaban et al. (2020) subsequently applies
the eXtended IGABEM (XIGABEM) formulation for shape optimisation in 2-D acoustic
problems. In fracture mechanics, (Peng et al., 2017b) extends the displacement field of the
2-D IGABEM using singular enrichment to enhance the mechanical response. Furthermore,
Andrade, Trevelyan and Leonel (2022) directly extracts SIFs using XIGABEM in 2-D
fatigue analysis of homogeneous media, while Andrade, Trevelyan and Leonel (2023) obtains
SIFs and T-stresses for bi-materials from the solution vector through the XIGABEM
approach.
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Another aspect associated with IGA is the challenges that the standard NURBS
surface parametrisation presents in representing holes and intricate details of complex
geometries. This limitation stems from the definition of a NURBS surface as a tensor
product of two univariate NURBS curves, resulting in large four-sided patches. This limits
their ability to model surfaces with additional edges or internal cuts. Then, trimming
operations resolve this issue, where a trimming curve defines the retained or removed
portion within the parametric space of the NURBS surface. This is a standard procedure
in CAD modelling, and its incorporation into numerical methods facilitates seamless
coupling between CAD modeling and mechanical analysis. In the FEM framework, the
seminal study of Kim, Seo and Youn (2009) promotes an IGA with trimmed surfaces,
addressing a specific integration strategy for cut knot spans and the loss in accuracy from
the trimming effect. Nagy and Benson (2015) subsequently refine solutions to these issues.
In the IGABEM framework, Wang, Benson and Nagy (2015) apply the trimmed surfaces in
a non-singular approach, in which the collocation points are placed outside the boundary.
This alleviates requirements over the placement of these points, as collocation points retain
validity even if their projections are on removed portions. Marussig et al. (2017) and
Marussig, Hiemstra and Hughes (2018) present the singular formulation of the IGABEM
with trimmed surfaces using Extended B-Splines and Truncated Hierarchical B-Splines to
stabilise the set of basis functions by altering the standard NURBS approximation. The
work of Peng and Lian (2022) performs a linear elastic fracture mechanics analysis using
trimmed surfaces to model displacement discontinuities at lateral faces. In addition, the
study of Beer (2025) proposes a global approach avoiding basis function trimming while
ensuring continuous collocation points by creating an additional mapping that comprises
only the valid region of the trimmed span. In this context, this study proposes the coupling

between trimmed surfaces and IGABEM while retaining original NURBS basis functions.

The computational mechanics research group of the Department of Structural
Engineering of the Sao Carlos School of Engineering (EESC) at the University of Sao
Paulo (USP) has developed innovative contributions to the field of this thesis. In two-
dimensional analyses, the numerical analysis of multi-cracked solids and their growth is
present in Leonel and Venturini (2010a) and Leonel and Venturini (2011). The fracture
process involving various material responses is also object of study using the BEM, such
as quasi-brittle Leonel and Venturini (2010b), Oliveira and Leonel (2013), viscoelastic
(Oliveira; Leonel, 2017), anisotropic Cordeiro and Leonel (2016), Cordeiro and Leonel
(2020), and inhomogeneous materials under fatigue Andrade and Leonel (2019). In addition,
the 2-D IGABEM formulation has been successfully applied to topology optimisation
Oliveira, Andrade and Leonel (2020) and to quasi-brittle materials fracture analysis Nardi
and Leonel (2024). Furthermore, three-dimensional BEM analysis has been conducted for
LEFM (Cordeiro; Leonel, 2019) and cohesive crack growth (Rocha; Leonel, 2022; Almeida;
Leonel, 2024a; Almeida; Leonel, 2024b; Almeida; Atroshchenko; Leonel, 2025). Enrichment
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strategies have also been developed by the group in Andrade and Leonel (2020), Andrade,
Trevelyan and Leonel (2022) and Andrade, Trevelyan and Leonel (2023) for isotropic and
anisotropic materials using the XBEM and the XIGABEM. Finally, Cordeiro and Leonel
(2018) is the first study of the research group addressing three-dimensional IGABEM
formulations for fracture mechanics, while Neto and Leonel (2022) focuses on adaptive
refinements for three-dimensional IGABEM with reinforcements and cracks. Thus, this
thesis aligns with the research group developments, focusing on new topics in the same

contexts of the previous researches.

1.2 Objectives

The main objective of this thesis is the proposal of enriched formulations for fracture
and fatigue analyses of three-dimensional solids within the Isogeometric Boundary Element
Method. Additionally, this study addresses the incorporation of trimmed CAD models
into the IGABEM framework.

Initially, the incorporation of the trimmed surfaces into the 3-D IGABEM is

developed. The main advantages of this topic are:

« Eliminating the need for mesh reconstruction from trimmed CAD models.

o Numerical analysis of more complex geometries than the ones generated with standard
NURBS surfaces.

Subsequently, the Heaviside enrichment allows the representation of strong discon-
tinuities along the external boundary intersected by cracks. The novel aspects associated

with this development are:

o Eliminating the mesh alignment requirement along the crossed region.

o Dismissal of re-meshing procedures in crack growth analysis.

Next, the Williams solution-based enrichment scheme improves the 3-D IGABEM
formulation by introducing an asymptotic behaviour next to the crack tip. Its main

novelties are:

e Representing the /r behaviour at lateral surfaces while capturing the strong discon-

tinuity at the intersection between the boundary and a crack.
o Improvements in convergence rates in comparison to the standard IGABEM.

« Simplified extraction of SIFs, as they become enrichment parameters.
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Finally, the fatigue crack propagation analysis using the aforementioned enrichment

strategies is conducted. The novel features of this application are:

o Using the SIFs directly extracted from the Williams enrichment with the Paris-

Erdogan Law to assess the component’s life cycle

o A novel crack front advancement algorithm allows for capturing changes in the crack

front curvature.

o Numerical analyses of three-dimensional crack configurations with two crack growth
criteria, being the Schollmann criterion being applied for the first time with an
IGABEM formulation.

1.3 Methodology

The numerical implementation of the formulations proposed in this Ph.D. thesis
is developed within the computational code of Prof. Edson Leonel’s research group,
which originated with Cordeiro (2018) and was further expanded by Neto (2023). The
programming language is Fortran 90, in which the 3-D formulation of the IGABEM had
already been implemented before the development of this thesis. In this sense, all novel
formulations presented in this thesis were implemented by the author. The validation
of the proposed algorithms and formulations involves comparing the solutions of simple
problems with analytical solutions, while more complex applications are verified against
results from the literature. The computer used to run the code and obtain the results of
this thesis is an AMD ®Ryzen 9 7900 processor (5.4 GHz, 12 cores) with 64 GB of RAM.
The numerical code uses the OpenMP parallel directive to reduce computational time in
critical tasks of the numerical analysis. The software Rhinoceros 6 (McNeel et al., 2010) is

responsible for generating the isogeometric geometry of all numerical applications.

1.4 OQutline

The remainder of this thesis is organised as follows: Chapter 2 describes the
IGABEM formulation for three-dimensional elastostatic problems. Chapter 3 presents the
incorporation of trimmed surfaces into IGABEM. Subsequently, Chapter 4 contains the
Heaviside enrichment function proposal for representing strong discontinuities along the
external boundary intersected by cracks and its consequences for the numerical method.
Next, the Williams solution-based enrichment strategy is presented in Chapter 5, for
both the external boundary crossed by cracks, and for crack surfaces enabling the direct
extraction of SIFs. In Chapter 6, the XIGABEM formulation is applied to fatigue crack
propagation analysis of cracked solids under cyclical loading conditions. Finally, Chapter 7
summarises the main findings of this thesis and provides some recommendations for further

investigation.
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2 ISOGEOMETRIC BOUNDARY ELEMENT METHOD

This chapter presents the theoretical aspects of the IGABEM. The IGABEM for
linear elasticity starts from the associated boundary value problem and the Somigliana
Identity (Somigliana, 1885). This relation involves the three-dimensional elastostatic
fundamental solutions. Furthermore, the limiting process over the Somigliana Identity
results in the integral equations applied to points on the solid’s boundary. Afterwards,
this chapter presents the dual BEM approach, which allows the analysis of cracked solids.
The next development is the isogeometric interpolation based on NURBS basis functions,
and its impact on the numerical integration over the surface and the collocation strategy.
The application of these tasks enables the generation of the algebraic system, which
determines the unknown mechanical fields. From the numerical solution, the equations for
the internal displacements and stresses are derived from the Somigliana Identity. Further
details about the BEM and the IGABEM can be found in Aliabadi (2002) and Beer,
Marussig and Duenser (2020), respectively. In addition, the numerical implementation of
the three-dimensional IGABEM has been developed by this research group since the work
of Cordeiro (2018).

2.1 Somigliana Identity and Kelvin Fundamental Solution

The linear elasticity boundary value problem considers a three-dimensional body
with domain 2 and boundary I', subjected to body forces b, as shown in fig. 1. The
Neumann and Dirichlet prescribed boundary conditions are tractions t over the boundary
I'; and displacements @ over the boundary I',, respectively, such that I' =T', U T, and
', NT; = (). In this problem, displacements and tractions are the unknown mechanical

fields for I'; and T',,, respectively.

From the local equilibrium of an infinitesimal part of the solid, the equation for

the balance of linear momentum is:
Uij + bk = Ok (21)

in which o is the stress tensor. Solving it directly can be burdensome or even impractical.

Alternatively, the application of the Weighted Residue Method on eq. (2.1) results in:
/Q (Ujk,j + bk> wr d) =0 (2.2)

where wy, is a weighting function. In the BEM, this function is the Kelvin Fundamental
Solution (Kelvin, 1848), so that it becomes possible to eliminate the domain integral in
further developments. This solution relates the displacements Uy, and tractions 77} in the
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Figure 1 — Arbitrary solid of the linear elasticity boundary value problem.

Source: The author.

k-direction at a given point x considering a unit force at the direction ¢ at the source
point X of an isotropic unbounded domain. The expressions for Uy, and Ty, are:

P S Vo
Upe(x,%X) = Tomn (1 —)r (3 —4v) bk + 707 k] s
. R -1 or )
Tp(x,%) = St =) {811 [(1 = 2v) 0gg + 3r o7 ] — (1 = 2v) (rgmp + T,kne)}

in which r = x — X is the distance vector between the source point and the field point while
r = ||r||. The term rj = "k represents the derivatives of » with respect to the & direction, and n
is the normal outward vector at the boundary field point. Additionally, u = 2(17%
the shear modulus, Young Modulus and Poisson ratio, respectively. Also, dy is the Kronecker

, E and v are

delta. The terms (x, %) will be omitted in all subsequent references to the fundamental solutions

for brevity. By substituting eq. (2.3) into eq. (2.1) and integrating the first term by parts:
/Q (031Uf); d - /Q 0ikUf A9+ /Q bl A2 = O, (2.4)
The application of the Divergence Theorem to the first integral of eq. (2.4) results in:

/F o U dT — /Q oikUf A2+ /Q beUj A9 = O, (2.5)

The application of the stress tensor symmetry (oj; = oy;) and the Cauchy formula

(tx = okjnj) in eq. (2.5) yields:
/ Ujptr dU' — / O‘ijékk de +/ br Uy, d2 = 0y (2.6)
r Q ’ Q

From the linearised displacement-strain relation 7, = ( Up ; + Uj; ;) /2, it follows that
0kjUfy.; = Okj€ir; by considering the symmetry of the stress tensor. This change in eq. (2.6)

culminates in:
T Q Q
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The generalised Hooke Law for isotropic materials states that oy = CijmnEmn. Due to
the constitutive tensor symmetry, Cyjppn = Cpypij. Then, kasﬁkj is equivalent to CmnkjEijEmn'
Analogously, these operations are also valid for the fundamental solutions, resulting in o7}, =
(Cmnkjezkj. These modifications transform the second term of eq. (2.7) into o}, emn. Since m
and n are summation indices, they can be replaced by k and j, respectively. The application of

all these operations modifies eq. (2.7) into:
/ Uty dT — / iy 2+ / bRl dQ = 0, (2.8)
r Q Q

The manipulation of the linearised displacement-strain relation also leads to U;kjskj =

OJ1;Uk,j, which then transforms the second integral of eq. (2.8) into:
r Q Q

By integrating by parts and using the Divergence Theorem on the second integral, eq. (2.9)

results:
T T Q Q

The development of the third integral follows from the local momentum with respect to
the fundamental solution, O'ij,j + by, = Oy, or Uij,j = —bj;,. Additionally, the body force in the
fundamental problem relates to the Dirac delta as b}, = A (x — %). The substitution of the
body force b}, into the third integral of eq. (2.10) enables the use of the sifting property of the
Dirac delta, which makes this integral result in —u,(X) and 0, for internal and external source
points, respectively. When the source point is on the boundary, this integration process requires
a limiting process, which is presented in section 2.2. These operations turn eq. (2.10) into the

Somigliana Identity (Somigliana, 1885):
cek(fc)uk(f() + / Tg*kuk dl' = / Uékktk dl“+/Qka2‘k ds) (2.11)
r r

in which ¢ (%) is the jump term whose value depends on the source point position. Internal
source points have cg, = dgi, while ¢y = 0gg for the external counterparts. The Somigliana
Identity relates the displacement of a point X based on the known mechanical fields at the
boundary. The remaining domain integral associated with the body forces can be evaluated in
several forms, such as radial integration (Gao, 2002) or the Dual Reciprocity Theorem (Aliabadi,
2002). In this work, the body forces will be absent in the numerical analyses, which dismisses the

assessment of the domain integral.

Obtaining of stresses and strains is also possible from the Somigliana Identity. The
differentiation of the eq. (2.11) with respect to the source point position and the incorporation of

the linearised displacement-strain relation yields the strains at the internal source point as:
(%) + / Ty, dT = / Ujity dT (2.12)
r r

The stresses integral equation arises from the application of the Hooke Law in eq. (2.12)

as:
ot (%) + / Styyup dl = / Dty dT (2.13)
I I
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in which the fundamental solutions DZ:Z;‘ and 5;:12]‘ are:

N 1
Diy;(%,%) = Sl — )2 (1 = 20)(Sker j + Ojr e — 57 k) + 3(rem 57 k)]
" - or
Skfj(x7 X) = Z“:?T(luﬁ{gain[(l — 2V)(5£j7"7]€ + V(égkr,j + 5j]€7'"g) - 57“787’7‘7‘7"]6] (214)

+ 3v(ner jr i+ ngrer i) + (1 = 20)(3ngr or j + oo, + nedjr) — (1 — 4v)ngde; }
Lastly, the substitution of the eq. (2.13) in the Cauchy formula (t; = o4jn¢) results in:

£5(%) + ne(R) /F Sigyup T = (%) /F Djyty dT (2.15)

Equation (2.15) is linearly independent from eq. (2.11), which is crucial for the Dual
BEM approach (Hong; Chen, 1988). This strategy is in section 2.3 for the numerical analysis of

cracked solids.

In the linear elasticity boundary value problem, the unknowns are displacements and
tractions at I'y and Iy, respectively. The Somigliana Identity allows finding these fields by
choosing source points external to the boundary. However, this approach is highly dependent on
the adopted distance between these points and the boundary. In addition, near-singular integrals
arise when the source point is close to the external boundary, which jeopardises the accuracy
of the response. Alternatively, placing the source points on the boundary leads to more stable
results; however, strongly singular and hypersingular integrals appear as a consequence of the
O(1/r*),a = 1,2,3 nature of the fundamental solutions. Additionally, determining the jump

term requires a limiting process analysis.

2.2 Limiting process: boundary integral equations

The Somigliana Identity and its traction equivalent are not yet valid for source points
on the boundary of the solid. To overcome this issue, the limiting process involves taking an
internal source point X on the boundary I' and expanding the surrounding boundary into an
auxiliary semi-sphere centered in X with radius ¢, as illustrated in fig. 2. The addition of this
fictitious additional domain and boundary results in X to become an internal source point, in
which eq. (2.11) and eq. (2.15) are now valid.

In this context, the addition of the fictitious domain and boundary on eq. (2.11) yields:

w@) + [ Thud + / Ty dT = / Uity dT + / Uty dT (2.16)
r-TI. rf T, re

The limiting process involves taking ¢ — 0 in the integrals of eq. (2.16) as:
up(X) + lg% (/F—FE 1) ug dF> + lg% (/Fi T)ug dF)

The integral containing the kernel U* and over I — I, is weakly-singular of order O(r~—1),

(2.17)

and it is computed as an improper integral. The integral with the same kernel U* but over I'[ is
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Figure 2 — Fictitious domain and boundary for the limiting process.

re

Source: Adapted from Rocha (2020)

0 when e — 0. On the other hand, the integrals with the kernel T* are strongly-singular (O(r~2))
in the limit, which demands the evaluation of lim._,q ( fFfFE Ty uk df) in the Cauchy Principal
Value (CPV) sense. The remaining integral over I'Y computation considers the displacement
expansion in the the first term of the Taylor Series as ux = ur —uy () +ug (X). The incorporation
of this expansion into the remaining integral results in:

lim </ Ty uk dF> = hm {/ Ty, (ug — ug (X) df} + hm [/ Thuk (X } (2.18)

e—0

The displacement continuity is responsible for the first integral being zero. The second
integral can be rearranged as wuy (X) lim._,o { fr* T} df} as uy (X) is constant, it can be placed
outside the integral. This integral yields a constant value, which results in the jump term cyy.
For source points on smooth boundaries having a unique value for the normal outward vector the
jump term is ¢y, = 0.507%. In this sense, the jump term now comprises all three possible scenarios
for the source point: internal, external, and on the boundary. By denoting the integration on
the CPV sense of the term with kernel T by f, eq. (2.11) becomes the Displacement Boundary

Integral Equation as:
con(R)un(R) + ][ T dT = / Uity dT (2.19)
r r

The limiting process can be applied at the stress boundary integral equation for internal
points to obtain a linearly independent equation from eq. (2.19) over the boundary of the solid.

Applying it to eq. (2.13) in a analogous manner to the displacement equation leads to:

Ugj(f() =+ lLI)I[I) (/F_F S]d]Uk dF) + hm </ Sk.é]'l,Lk dF)
= 251(1) < o, Dke]tk dF) + hm (/ Dk[]tk dF)

The integrals with the kernel D* are strongly singular due to the nature of the kernel,

(2.20)

which is of order O(r~2). The integral with D* and over I — I'; is also improper, which
demands the integration in the CPV sense. In addition, the other integral containing D*
requires regularisation, which involves expanding the traction field into the first term of its Taylor
Series as t =t — tg(X) + tx(X). This allows rearranging this integral as:

lim ( /F , Digst dF) ~ lim [ / Diy; (s — th(% ))] +15(%) lim [ [ Di dl“] (2.21)

e—0
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in which the first integral of eq. (2.21) is zero after taking the limit. ¢;(X) is constant and is placed
outside the second integral, while the limit of the remaining integral is a term that multiplies the

stress tensor oy;, being py;(X).

Subsequently, the evaluation of the integrals with S* takes place considering the hyper-
singular nature of this kernel (O(r~2)). The expansion of the displacement field into the second
term of the Taylor Series as uy, = up — ug(X) + up(X) — Upm (X) (Tm — Tm) + U (X) (T — Tim)

allows the regularisation of the term lim._.q ( Jr+ S;gjuk dF). This substitution leads to:

lim ( / St dF) — lim { / St (g — uk(R) — i on (&) (@ — ) dr}
r r

e—0 e—0

(2.22)

g (%) lim [ / , St dF] (%) lim [ [\ St = ) dF}

in which both wu(%X) and uy,,(X) are constants and are placed outside their corresponding
integrals. Taking the limit yields the first integral as zero and the third integral results in another
term that multiplies the stress tensor oy; as 3¢;. Combining both py; and §y; results in —0.50;
for a source point on a smooth boundary. Lastly, the conjoint analysis of the second integral and
the first integral of eq. (2.20) allows for their evaluation in the Hadamard Finite Part (HPF)

sense, denoted as:

e—0

r-rI. r r

in which  denotes the integration in the HPF sense. The limiting process for the stress boundary
integral equation enables the definition of the jump term for source points also on the boundary

as:
0.5 O'gj()AC) +7£ S};gjuk dI’ :][ D;&jtk dI’ (2.24)
r r

By applying the Cauchy formula to eq. (2.24) and using ¢ to express the source point

position, the Traction Boundary Integral Equation emerges as:

() (%) + ng(fc)jé Sigyup dT” = W(x)][r Djyty dT (2.25)
in which ¢(%) is 0, 0.5 and 1.0 for external, on the boundary, and internal source points.

In summary, the limiting process applied to both the Somigliana Identity and the stress
BIEs results in two linearly independent BIEs that are valid for source points on the boundary.
The imposition by collocation of these two equations for the opposite sides of a crack in cracked
solids is the main idea of the Dual BEM.

2.3 Dual Boundary Integral Equations

In cracked solids, the crack surfaces coincide geometrically, which prohibits the collocation
of the DBIE on both sides, as it results in an ill-posed system. This issue occurs because the
fundamental kernels depend on the distance between the source point and the boundary, and
placing two source points in the same position but in different crack surfaces will lead to the

problem not identifying the presence of the crack in the analysis. To overcome this limitation,
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Hong and Chen (1988) proposed the Dual BEM, in which a crack surface and and its opposite
receive the DBIE and the TBIE, respectively. This strategy permits the accurate determination

of the mechanical quantities at these surfaces and at the entire solid.

In this context, let the boundaries 'Y and I', represent the opposite crack faces. The

DBIE is responsible for representing the contribution of the source points Xt over I'} as:
Sor (X dop (X~
M(Q)uk(f{—i_) + %(Q)Uk(f\{_) —l-]é Té‘}@uk dl' = /I‘ngtk dI’ (2.26)

in which X is the source point over I'; . It is worth noting the presence of the jump term from

X", which arises from the limiting process that considers both crack surfaces in this analysis.

The application of the TBIE over the source point on ', also brings up a jump term from &°*

as:
1 1
THET) - SR + ng(fcc_)jé Sty dT = ng(fc_)][ Diyity, dT (2.27)
2 2 r J r 7

Thus, the mechanical problem is entirely represented by applying eq. (2.19) on the
external boundary, while eq. (2.26) and eq. (2.27) model the upper and lower crack surfaces.
Then, the next task is to apply a discretisation strategy to promote the approximation of

displacements and traction fields.

2.4 BEM algebraic system and IGABEM

Discretisation techniques allow the mechanical analysis of various solids with complex
geometries. This strategy consists of interpolating the mechanical fields using a parametric
representation, in which the quality of the numerical response is intrinsic to the ability of
these approximations. In standard isoparametric approaches of the BEM, the same polynomial
functions are responsible for interpolating both geometry and mechanical fields. In this sense, the
choice of a better set of functions improves the overall accuracy, which reduces the refinement
requirement and the amount of system unknowns. A suitable set of approximation functions is
the NURBS function space due to its capacity to exactly represent curves and surfaces such
as circles, spheres, and cylinders. Since CAD models normally apply NURBS functions for the
geometry discretisation, their use for the mechanical fields leads to the isogeometric approach of
the BEM (IGABEM). In this context, the parametrisation for the geometry, displacements, and
tractions becomes:

o) (€1,6) = ¢L(E1, &) Py
u(€1,6) = oL (61, &2)d) (2.28)

£ (€1,&) = ¢L(61, E2)D),

in which ¢? is the NURBS function shown in eq. (A.9) dg and pf are displacement and traction
coefficients for the interpolation of these mechanical fields, and § is a global connectivity index
associated with its local counterpart o of the NURBS patch ~. These parameters are directly
related to their corresponding control points, so that they do not have a physical meaning but
have appropriate units. Despite their lack of physical meaning, boundary values of displacement

and traction components can be obtained from the direct application of eq. (2.28). However, this
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characteristic raises concerns in the application of non-constant boundary conditions, for which

a Least-Squares approximation is an alternative to this task (Peng, 2016).

The imposition of the NURBS discretisation on the BIEs leads to the discretised form
of the BIEs. Besides, it is relevant to mention that the nomenclature of “source point” and
“collocation point” is interchangeable in a collocation-based approach and only the latter will be
applied in the remainder of this work. Then, by substituting eq. (2.28) for collocation points on
the external boundary (eq. (2.19)) and on opposite crack faces (eq. (2.26)) and eq. (2.27)), the

discretised BIEs are obtained as:
6(]{ . b 18 NS 5 NS 5
7¢3(X )dy, +72:_1 VFv Trdd dF] dy = 723—1 [Av Uik 94 dl“] Dl

Stk 4, Otk 4 1 me—
5 CUE) Y + LR+

NS NS
Z[/ Te*mzdP] dizzl/ Uqusgdr] Py (2.29)
'y:l F’Y 'y:l F’Y

ac— L4
S OLE I - SOLR )+
NS NS
ne(&) Y [ St dr] ] = ne&) Y- | Digorar| o]
y=1 T y=1 T
in which £°°, " and ®°~ represent the collocation points on the external boundary, upper

crack face and lower crack face, respectively. The coefficients df and p'g are constants and placed
outside of the integrals. Additionally, the § and F symbols represent the integration in the CPV

and in the HPF sense, respectively, as mentioned in section 2.2.

The BIEs require numerical integration over the NURBS surfaces. The Gauss-Legendre
quadrature is responsible for the non-singular numerical integration, in which a mapping occurs
between the physical space and the integration space A such that {&;, & € A|A = [—1,1]x[-1,1]}.
The NURBS parametric space requires two transformations, being the first between the physical
space and the parametric space, as in eq. (2.28) and the NURBS functions are given in Appendix
A. The second transformation maps a given NURBS parametric space whose knot span is

€, i“] X [gg, gﬂ] to the integration space as:

Et - + (@M + &)

“s 2 (2.30)
¢ G-+ (EM +€) '
2= 2

The correspondence between the physical space and the integration space for the boundary
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mapping involves two Jacobians, J; and Jo, as:

dl' = JyJodA = JdA

|| or or

= [oe <3 21
Lt -a) @’ -4

2T 2 2

in which J accounts for the total Jacobian of the transformation. The non-singular numerical
integration occurs at all knot spans that do not contain the collocation point, while the integration
of knot spans containing collocation points requires a different approach due to the strongly-
singular or hyper-singular nature of the kernels. This study applies the Singularity Subtraction
Technique (SST) (Guiggiani; Gigante, 1990; Guiggiani et al., 1992) for its evaluation. This
technique is based on a polar transformation around the singularity, followed by the expansion
in Laurent series of the singular integrand and a semi-analytical approach in the circumferential
direction. In addition, the integration in the HPF sense demands a C'! continuity for the integrand
in the vicinity of the collocation point. This study utilises the expanded terms for the application
of the SST for three-dimensional IGABEM according to Cordeiro and Leonel (2018). In this
sense, the boundary discretisation of the BIEs with NURBS surfaces shown in eq. (2.28) after

the corresponding numerical integration results in:

6@]@ Z gbfy seb dﬁ + Z T*a'ydﬁ _ Z Uzka'ypi

5gk qu_i_ Ac+ dﬁ 5&; ZQZ)W (&S d +ZT*a'ydﬁ ZUZka7p£

a=1

(2.32)
130 130
5 200 (& =5 3 Al
a=1

xay g *a'y
+ng(R Z Sk:é] = ne(X Z Dke]

in which % represents position of the collocation point on the NURBS surface, n” represents the
number of parameters in a surface v, while NS stands for the total of NURBS surfaces in the
discretisation. Additionally, the terms T* et UZ et S 7 and QZZY represent the integration of

the fundamental kernels along the knot spans as:
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nks

*a'y_ Z/TZkQZ)’Y JngA

ks=1

nks
Uy = / Uppdd, J5° dA
ke=1 (2.33)

nks

ZZA{_ Z/Sk@ ’YJ};SdA
ks=1

nks
* k
Dy = 2 / Dizy; 00 J5° dA
S=

in which ks denotes the knot span, J}Y‘S refers to the corresponding Jacobian of the surface v, and

ngs indicates the number of knot spans in the patch ~.

The amount of displacement and traction coefficients in eq. (2.33) is 3Ny and 3N,
respectively, in which Ny = N, = N¢oer when both fields share the same discretisation. Since the
boundary conditions enable the determination of half of these coefficients, the other half remains
unknown due to I', NT', = &. This implies that the elastostatic boundary value problem in its
discretised form has 3 N oo unknowns distributed between d and p. To obtain these coefficients,
the required number of equations for constructing a well-posed algebraic system comes from the
application of eq. (2.32) for N different collocation points, resulting in 3 different equations
at each point. A suitable strategy for defining the placement of each X on the boundary is the
Greville Abscissae (Greville, 1964). In this sense, a given collocation point associated with a

basis function o in a NURBS surface v has its parametric coordinates (£, 5%)“7 as:

i+p
Zs Las=i4151 gl

()™ =
LD (2.34)
gy = S
2 q

in which ¢ and j refer to the indices of the uni-variate NURBS curve responsible for generating
the surface and &7 and &5 are the knots from the knot vectors. In addition, the repositioning
strategy replaces the collocation point when it lies on a surface edge or when either &5 or &5 are
equal to a knot whose multiplicity causes C? continuity. This step ensures that all collocation
points are on a smooth boundary, and guarantees the C! continuity required for all points lying
on the crack surfaces. The replacement for a knot span [£}, £711] x [52, 2 +1] is performed by

adjusting & or &5 as:
()™ = (€)™ £01(EH - )

(&Y = (&) £ 0.1(& ™ — &) (2.35)

in which the =+ sign refers to forward or backward movement, which depends on the original

position of the collocation point.

The application of eq. (2.32) to all collocation points, whose position comes from the
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Greville Abscissae strategy, results in the IGABEM algebraic system:

Heb deb Geb peb

He at | = | gt pc+ 056

HC dC GC pC *
Hd = Gt

in which H®®, Ht, H®, G, G°T, and G represent the influence factors of displacement and
traction for a collocation point on the external boundary (eb), upper crack face (c+) or lower

crack face (c-).

The boundary conditions application consists of assigning appropriate values to the
displacement and traction coefficients in eq. (2.36) followed by a rearranging task of the algebraic
system. Constant boundary conditions only require specifying their value for all coefficients
of the corresponding NURBS surface. However, all other distributions require an intermediate
operation, such as direct integration of the entire kernel using the analytical expression of the
boundary condition, or a Least-Squares strategy to determine the best coefficients representing
the known field. In this thesis, all applications either use constant boundary conditions or apply
them using their analytical expressions in specific applications, as mentioned when applicable.
The algebraic system of eq. (2.36) transforms into Ax = b after incorporating the boundary
conditions, in which A stores all influence factors, and is a dense and unsymmetrical matrix.
The vector x comprises both unknown displacements and tractions coefficients, and b is the

right-hand side vector containing the result of the boundary condition application.

2.5 Internal mechanical fields

After solving the algebraic system, the displacement and traction coefficients provide
a complete mechanical description of the mechanical fields over the boundary of the solid.
Subsequently, the BIEs for internal points (eq. (2.19) and eq. (2.24)) allow for the determination
of displacements and stresses throughout the entire solid’s domain. Their discretised form arises
from a procedure analogous to that used in the IGABEM algebraic system determination. The
main difference is the absence of strongly singular or hyper singular integration, which eliminates
the need for their treatment due to the position of the internal source point. Thus, the compact

form of the discretised Displacement BIE is:

) NS NS
up (&™) = S URTpL - Y Tpdy
v=1 y=1

uint _ Gintp o Hintd

(2.37)

in which U, and T, are defined in eq. (2.33) requiring no singularity treatment. In the
matrix form, H™ and G™ are influence matrices of the displacement and traction coefficients,

respectively.

By using the discretised form of the mechanical fields in eq. (2.24), the BIE for stresses
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at an internal point becomes:

A~ t * Qry *oz'y
o (R & ZDMJ pk ZSM]

— ]Dmtt _ Slntu

(2.38)

in which the terms ngy and SZZV correspond to the integration of eq. (2.33), and the tensors

Dt and S™ store the computed values.
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3 TRIMMED SURFACES ON IGABEM

This chapter presents the required adaptations of the three-dimensional IGABEM to
account for geometries containing trimmed surfaces. Trimmed surfaces are standard NURBS
surface under a Boolean subtraction operation to remove certain parts, leaving the desired
shape. This operation is necessary in the context of NURBS parametrisation because NURBS
surfaces often represent large portions of the boundary using a single tensor-product structure.
Consequently, the trimming operation becomes a suitable approach to represent holes or geometric
details without requiring multiple NURBS surfaces. Since these surfaces are common in CAD solid
modelling, their use with the IGABEM enables numerical analysis of more complex components
without the need for a mesh restructuring. In this context, incorporating trimmed surfaces to the
IGABEM requires three steps. The first task is identifying the knot spans crossed by the trimming
curves, and the corresponding effect on basis functions and control points of the original NURBS
surface. Next, the numerical integration of trimmed knot spans requires a specific procedure since
their arbitrary shape prevents the direct use of Gauss-Legendre quadrature. Lastly, trimming
may remove portions that contain the original collocation points obtained through the Greville
Abscissae strategy. To address this issue, an additional collocation strategy replaces the previous
points with new points on trimmed knot spans. Two numerical applications demonstrate the
ability of the IGABEM to solve three-dimensional problems with trimmed surfaces, as well as its

challenges and limitations in its incorporation.

3.1 Identification of trimmed knot spans and basis functions

The identification task for incorporating trimmed surfaces into the IGABEM focuses on
classifying knot spans and control points in complete, trimmed, or void, according to section A.4.
In addition, the intersection of the trimming curve and the knot span of the NURBS surface in
either parametric direction is crucial for defining the the shape of the trimmed knot span. To store
this information, a specific procedure identifies both the parametric coordinate of the trimming

curve and the corresponding NURBS surface pair in the knot span where the intersection occurs.

The first task in the identification scheme is to find the parametric coordinate of the
trimming curve where the curve intersects a knot span edge. This search relies on a two-step
algorithm, firstly performing an incremental scan along the trimming curve using its parametric
coordinate t; = tg + i, with 6 = (tp — tg)/n and n is the number of subdivisions. The pair of
parametric coordinates at the NURBS surface (£;(¢;),&2(t;)) corresponds to a position within
each uni-variate knot vector. When the pair related to ¢;11 is at a different knot span than the
pair associated with ¢;, it indicates that a crossing exists at a ts such that ¢; < t; < t;411. An
auxiliary variable ¢ = 1,2 indicates the parametric direction in which the crossing occurs so that
the value at §, is known. The second step is a local Newton-Raphson approach to determine
t = ts such that the residual E(t) = 55 — &,(t) is zero. Figure 3 illustrates this algorithm, in

which the crossing at both parametric directions depicts the possibilities for p. By expanding the
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residual E(t) into a Taylor series around ¢ and taking the first term, the increment Aty of the

local Newton-Raphson iterative procedure is:

Aty = (3.1)
in which the update of tx11 = ¢ + Aty occurs until the residual is less than a prescribed tolerance.
In addition, OF/0t is the tangent vector component in the p direction. Additionally, each knot
span in which the local Newton-Raphson search for ¢5 occurs is classified as a trimmed knot

span.

Figure 3 — Two-step algorithm to find the parametric coordinate of the trimming curve at
the intersection with a knot span: ¢ definition.
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Source: The author.

Next, the ray casting algorithm is responsible for classifying points (£§, £5') as internal or

external to the set of trimming curves. This strategy requires defining a crossing function feyogs
which counts the number of crossings between a line segment and the trimming curve. The line
segment originates at the point under classification (£§,£5') and extends across the trimming
curve. An even number of crossings indicates that the point is external to the set, whereas it
is internal if f..ogs is 0dd. The function f.oss relates the parametric coordinate at the NURBS
surface & with the coordinate &4(£1(t)), in which the line segment equation defines £ while
€1(t) follows the interpolation of the trimming curve in terms of its parametric coordinate ¢. The

expression for feross is:

fcross = 52(t) - £2L(£1(t)) = fcross = £Q(t) - {mL[fl(t) - ffl] + ggl} (32)

in which my = (&£ — &) /(¢F — £§'). Figure 4 illustrates the geometric components of the
ray casting algorithm. The crossing function is zero when the line segment intersects the

trimming curve. This allows scanning the trimming curve along the parametric coordinate ¢
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using 0 = (tp — tg)/n and t; = to + 9. Each sign change in f.0s indicates a crossing, implying
that feross = 0 for t between t; and ¢;,1.

Figure 4 — Ray casting algorithm for the detection of internal and external points to the
trimming sets.
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The ray casting algorithm determines the position of the knot span and each of its
vertices relative to the trimming set. The knot span definition as complete or void considers
the relative position of its central point to a trimming set when it is not crossed by any curve.
Complete knot spans are those external to inner trimming curves or internal to outer trimming
curves. Conversely, void knot spans are internal to inner trimming curves or external to outer
trimming curves. In addition, categorising vertices of a trimmed knot span is necessary to define
its cell subdivision for plotting and numerical integration. It is worth mentioning that a single
scanning along the trimming set is sufficient to classify all knot spans and vertices, which results

in efficient analysis.

The classification of the vertices allows defining the shape of each trimmed knot span.
Three possible scenarios exist for these vertices, as illustrated in fig. 5. Types 1, 2, and 3 have,

respectively, 1, 2, and 3 original vertices in their final shapes, with three, four, or five sides.
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Other vertices result from the intersections between the trimming curve and the knot span, with
their parametric coordinates determined during the identification process. The ordering of the
knot span vertices follows fig. 6 proceeding counter-clockwise from the bottom left corner in the
parametric space. The positions of trimming curve endpoints influence the trimmed knot spans
when they are not located on an trimmed knot span edge. Reshaping trimmed knot spans that
include trimming curve endpoints accounts for an additional edge and vertex, as shown in fig. 7.
Other specific cases, such as two different trimming curves or two endpoints on the same knot
span, are not considered in this study. Expanding the types of trimmed knot spans is suggested

for future work.

Figure 5 — Trimmed knot span types.

Type 2 Type 3
Source: The author.

Figure 6 — Trimmed knot span ordering of vertices and edges.
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Source: The author.

The final identification task involves categorising control points and their associated basis
functions as complete, trimmed, or void. Their classification relies on the type of knot spans
within the support of the basis functions. Complete basis functions and control points have only
complete knot spans in their support, while the void counterparts contain only void knot spans
in it. Basis functions whose support includes a trimmed knot span are trimmed ones. After this
step, void control points are dispensable from the interpolation, since their domain does not

represent any portion of the solid.
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Figure 7 — Influence of endpoints internal to trimmed knot span.
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3.2 Numerical integration of trimmed knot spans

The trimming operation on NURBS surfaces requires a specific approach for the numer-
ical integration of the trimmed knot spans since the direct Gauss-Legendre quadrature does
not account for curved sides in the standard transformation. This study adopts two different
integration strategies: the Kim, Seo and Youn (2009) approach and a new polar strategy in the
trimming context. Both strategies place the integration points at the same positions. However, the
polar strategy is computationally simpler than Kim, Seo and Youn (2009) approach, particularly
in evaluating singular integrals in IGABEM.

3.2.1 Kim, Seo and Youn (2009) strategy

The Kim, Seo and Youn (2009) integration strategy for trimmed knot spans adopts two
supplementary mappings between the integration space and the NURBS parametric space, as
illustrated in fig. 8. These two mappings incorporate the trimming curve geometry, ensuring an
accurate representation of the trimmed knot span. This strategy requires subdividing the knot
span into two types of triangular cells. Type A cells are triangles with one side formed by the

trimming curve, whereas Type B cells are standard triangles.

Figure 8 — Mappings required for Kim, Seo and Youn (2009) strategy.
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52

The first mapping T transforms a pair of coordinates in the integration space ({Al, ég)
to the first auxiliary rectangular space 0y with (¢,() € Q1 = {[t1;t2] x [0;1]}, in which ¢ is the
trimming curve parametric coordinate, and ¢; and t2 denote its limits in the mapped cell. The

expressions for this mapping are:

T, : {&,&) — {t,¢)

t::%ﬁg—m)+%ug+h) (3.3)
_é2 1
“Tets

The second mapping T+ transforms a pair from €27 into the second auxiliary space €29 in
which both upper limits from §2; collapse into a single point in {29, converting a rectangle into a
triangle. In addition, this mapping incorporates the trimming curve C(t) through ¢ = T3 e,

in which T3 represents a third mapping that follows in sequence. Thus, T is:

Ty : {t,(} - {X,Y}
X = dx ()1 ¢) (3.4)
Y =y (t)(1— ) +¢

in which ¥ x and ¥y are components of )

T3 is then responsible for mapping from the auxiliary space (2 to the NURBS parametric
space. This transformation is analogous to the linear triangular finite element, in which the
vertices in the NURBS space are (£1,£3), (€2,£3) and (&5,&3), being:

T3 : {X7Y} — {51752}
G=YE+(1-X-Y)§+X& (3.5)
HL=Y&4+(1-X-Y)E + X8

The integration of type B cells uses all the mappings for type A cells considering ¢; = 0.0
and to = 1.0 in eq. (3.3), and ¥ x(t) =t and ¥y (t) = 0 in eq. (3.4). These assumptions cause
curved side of the type A cell to become a straight side.

The Jacobians of each transformation perform a role in the numerical integration. Similar

to the definition in eq. (2.31), the Jacobian for a cell in the trimmed knot span is:

or or
7X7

or " or
061 0&

~

o dA = VT
o9& 9, 1eees

dA = J] JJ J3 JJ dA (3.6)

7:‘
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in which jiy, j;, and jg correspond to the mappings T;, Ty and T3 as:

ot % to — 11

ot .

. _ o @
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& 96 2

OX Y1 gyx(t) Dy (1)

-9 |- o 1-0 =510 (3.7)
9 ac —x (1) —y(t) +1

061 0& ‘

=06
o ov

—+& -8+8
g-8 &-¢6

3.2.2 Polar strategy

This study proposes a specific mapping with a polar strategy to address the presence of the
trimming curve in the knot span. This proposition is suitable for the singular integration context
in the IGABEM, in which a polar mapping already exists in the SST procedure. In this context,
this strategy is responsible for the integration assessment of knot spans containing collocation

points, and also non-singular integration. Figure 9 depicts the polar mapping transformations.

Figure 9 — Polar mapping for trimmed knot spans.
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The first step is defining the pole around which the integration is centred. In the SST
context, the pole is the collocation point, whereas for regular integration assessment, it is a
vertex opposite to the trimming curve, as illustrated in fig. 10. The strategy requires subdividing
the trimmed knot span into triangles, depending on the pole position. When the opposite side
is regular, all transformations remain valid by setting t; = 0.0, {2 = 1.0 and assuming a linear

correlation between its vertices.

The first transformation maps the integration space {£1,6} € A|A = {[—1;1] x [-1;1]}
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Figure 10 — Pole choice in the polar integration strategy.

Pole Pole
Type 1: pole is Type 2: pole is vertex Type 3: pole is opposite
remaining vertex before the trimming vertex to the trimming curve

curve in the ordering
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onto the first auxiliary space QF = {[t1,t2] x [0, ]} using the T operation as:

T (&,&) — (t,p)
(ta—t1)é2  (t2+1t1)

t= 2R S0 (3.8)
W&, A
Py Ty

in which for a given ¢ on the trimming curve limit p(¢) exists. This term represents the distance
between the pole and the point on the trimming curve with parametric coordinate ¢t. The

geometric meaning of p(t) is illustrated in fig. 11, and its value is given by:

p(t) =160 — &1 + [a(t) - 17 (3.9
in which (£Y,£9) denotes the pole.

Figure 11 — Geometric meaning of p.
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Source: The author.

Next, determining § and its cosine and sine requires the pair of coordinates (£1(t), &2(t))
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and the second transformation T1 operates its role as:

T3 : (t,p) = (6, p)

COsU = 61( ) fl
"=
sing— 20 -8 (8.10)
(t
— arctan §a(t) — &
)= anct (&(t) 50>

The final transformation T3P computes the parametric coordinates on the NURBS surface

from the radius p and the angle 6 as:

5 (0,0) = (61,6)
&i1(p,0) = &) + pcost (3.11)
&(p,0) = €9+ psind

Notably, the main difference between the proposed strategy and classical approaches is
the inclusion of the transformations T{ and T, which account for the trimming curve. In the

context of numerical integration, the Jacobians of each transformation are:

grr = P (= h)

2 2
de
P _ (3.12)
2Tt
JP A
and the complete transformation is:
ar, = || 25 90l gn — g P e |98 98l gy — P P TP aa (3.13)
651 52 afl 852

The differential relation of j2P 7 from eq. (3.12) utilises a chain rule as:

49 00 95 96 9&

Fri %ﬁ"‘@ﬁ (3.14)
in which the derivatives of # with respect to £&; and & are:
90 _ —1 &) —& £ — &() _ & —61)
% [em- ][m> 7 fat - +[em -7 07
+
&i(t) — &
90 —sinb
& p(t)
9 _ 1 L fi(t) — & Cam-g Y
= &a(t) - 3]2 GO -8 [a@) -4 +lan -g* A2
R
1(t) — &
90 cosb
9 p(t)

while 0¢;/0t and 0&/0t are components of the trimming curve tangent vector.
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3.3 Collocation strategy for trimmed surfaces

The collocation strategy for trimmed NURBS surfaces poses a challenge in IGABEM
because the standard Greville Abscissae approach may position the collocation points on removed
portions of the boundary of these surfaces. This requires an additional modification accounting for
the contribution of these points. This topic is relevant as no studies have investigated the optimal
position of these points for trimmed surfaces in IGABEM, and current collocation strategies
remain limited to simple geometries. In this context, this study proposes a collocation strategy
inspired by Peng and Lian (2022), in which the trimmed knot spans receive (p + 1) * (¢ + 1)
collocation points. Since Peng and Lian (2022) does not specify the rules for this positioning,

this section details the placement strategy for these points.

Initially, the standard Greville Abscissae strategy distributes the collocation points onto
the trimmed surfaces irrespective of the presence of trimming curves. Next, the points associated
with void basis functions are removed from the analysis since their support no longer defines
the boundary. Subsequently, the proposed strategy identifies collocation points at trimmed knot
spans and assigns new collocation points to these spans to occupy their influence in the algebraic

system.

Each trimmed knot span adopts a positioning approach depending on its type (1, 2 or 3,
according to fig. 5). Type 1 trimmed knot spans have a triangular shape, in which the strategy
distributes collocation points in the integration space [—1,1] x [—1, 1] based on the Gauss points’
position. The mapping proposed by Kim, Seo and Youn (2009) transforms their coordinates to
obtain their parametric coordinates in the NURBS parametric space, according to fig. 8. The
strategy for type 2 trimmed knot spans uniformly subdivides the side opposite the trimming
curve and places equally spaced points along the line segment perpendicular to this side, as
illustrated in fig. 12. For type 3 trimmed knot spans, the approach first subdivides the trimming
curve uniformly. Then, it defines a perpendicular line segment starting from the subdivided
trimming curve and distributes collocation points uniformly along this segment, according to
fig. 13.

Figure 12 — Collocation strategy for type 2 trimmed knot spans considering p = ¢ = 1.

Source: The author.

The contribution of the BIEs applied to each new collocation point occupies the position
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Figure 13 — Collocation strategy for type 3 trimmed knot spans considering p = ¢ = 1.

Source: The author.

of the removed collocation point of the corresponding trimmed knot span. This strategy utilises
more points than the minimum necessary for the numerical analysis, which poses as a disadvantage
that can be further explored in other studies. To accommodate the influence of the new collocation
points while keeping a square system, the strategy assigns to each previous row the mean value

of the contributions from the new points.

3.4 Numerical applications

This section presents two numerical applications using the IGABEM formulations for
trimmed surfaces. The first application consists of a cube with a cylindrical hole, that has an
analytical solution. The second application is a quarter of a toroidal shape under loading in one
of its extremities and clamped in the other. These two analyses enable a critical view of the

formulations in this chapter and their limitations.

3.4.1 Cube with a cylindrical hole

The first application involving trimmed surfaces in the IGABEM framework analyses the
mechanical behavior of a cube with unit side and a cylindrical hole of radius » = 0.15. Figure 14
illustrates its geometry and boundary conditions. The prescribed displacements are u; = 0.0,
ug = 0.0 and uz = 0.0 at the faces with constant coordinates z1 = 0.0, xo = 0.0, and z3 = 0.0,
respectively. In addition, the face with x3 = 1.0 has a traction 3 = 1.0, which induces a uniform

stress state along the x3 direction. The analytical solution of this problem is:

—VT
uy (21, T2, 23) = 5
—vx
ug (21, T2, 23) = Z 2 (3.16)

i
us(xy, z2,x3) = ¥l
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in which the material properties are £ = 1.0 and v = 0.3. This allows evaluating the numerical

response quality using the Lo error norm at the boundary as:

ff‘ <unum - uex) . (unum - uex)T dr
_ 3.17
HeHL2 fF (uexug;) ar ( )

in which uy,m and uey represent the numerical and exact solutions for the displacements,

respectively. The error assessment uses integration points positioned exactly as in the numerical

evaluation of standard integrals, specifically those that do not include the SST scheme.

Figure 14 — Cube with cylindrical hole: geometry and boundary conditions.

Source: The author.

The isogeometric mesh of this application has 10 NURBS surfaces, as depicted in fig. 15.
Six faces define the cube geometry, while the other four faces parametrise the lateral faces of
the hole. The upper (z3 = 1.0) and the lower (z3 = 0.0) faces contain a trimming curve of
degree 2 that removes the internal region of the hole. The knot vector of these trimming curves
is7=14{0; 0; 0; 1/4; 1/2; 3/4; 1; 1; 1} and table 1 presents the coordinates of the control
points on the NURBS parametric space. These two faces use a single trimmed NURBS surface,
instead of four surfaces in a standard IGABEM approach. All NURBS surfaces that represent
the cube have degree 1 in both parametric directions and the corresponding knot vectors are
=1 = Z9 = {0.0;0.0;0.5; 1.0; 1.0}. The faces that represent the cylinder have degree 2 in the
circumferential direction and degree 1 in the longitudinal direction, and the knot vectors are
=1 ={0.0;0.0;0.0;0.5;1.0;1.0; 1.0} and =5 = {0.0;0.0;0.5;1.0; 1.0}. It is worth mentioning that
the linear and quadratic basis functions adopted for the mechanical fields approximation are
capable of representing in an exact manner both the geometry and the expected response of this
application. The IGABEM analysis with trimmed surfaces uses 116 collocation points, in which
fig. 16 illustrates the placement of those associated with the upper and lower faces. The mapping
strategies for the trimmed surfaces place the integration points according to fig. 17 using 20
integration points for each direction in the integration space. The subdivision of the NURBS

parametric space into sub-triangles is noticeable, which is a characteristic of both mappings.
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Figure 15 — CAD model of cube with cylindrical hole.

Source: The author.

Table 1 — Position of the control points of the trimming curve on the NURBS parametric

space.
Number & & w
1 065 050 LO

2 065 035 %2
3 050 035 1.0
4 035 035 £
5 035 050 1.0
6 035 065 %2
7050 0.65 1.0
8 065 065 ¥
9 065 050 1.0

Source: The author.

Figure 18 illustrates the total displacement field of this application. The response is in
accordance with the expected uniform displacement, and also captures the Poisson effect in
other directions. The convergence analysis of the relative Lo norm of error for this application
presented in fig. 19 involves varying the number of integration points, ranging from 5 to 30 in
increments of 5. The error drops below 1076 with 25 integration points or more, demonstrating
the accuracy of the response. This number of integration points addresses the near-singular

integrations of the IGABEM formulation.
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Figure 16 — Position of added collocation points in trimmed faces.
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Figure 17 — Position of integration points for trimmed faces of cube with cylindrical hole.
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Figure 18 — Total displacements of a cube with cylindrical hole under tensile loading.
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Figure 19 — Relative L, norm of error for total displacements varying the number of
integration points.
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3.4.2 Thick-walled quarter-torus

The second application using the IGABEM for a trimmed model is the mechanical analysis
of a thick-walled tube whose geometry is a quarter-torus. Since standard Lagrangian interpolations
cannot accurately represent this curved geometry with few parameters, the IGABEM approach is
superior for determining the mechanical fields. In this context, fig. 20 illustrates the geometry and
the boundary conditions of this analysis, in which the face with 1 = 0.0 has the displacements
restricted in all three directions and two uniform tractions, ¢; = 1.0 and ¢3 = 1.0, are applied at
the face x5 = 0.0. The material properties are £ = 1000.0 and v = 0.3. Notably, these loading

conditions induce a three-dimensional response.

Figure 20 — Thick-walled quarter-torus geometry and boundary conditions.

Source: The author.

The isogeometric model of this application comprises 10 NURBS surfaces, as illustrated
in fig. 21, in which 8 faces form the laterals curved faces and 2 planar faces. The planar faces
have degree 1 in both parametric directions, and their knot vectors are knot =1 = Zp =
{0.0; 0.0; 0.25; 0.5; 0.75;1.0;1.0}. Two trimming curves cut the planar faces, in which the inner
curve defines the hole, while the outer curve removes the unnecessary part. Table 2 presents the
control points and weights of these curves in the NURBS parametric space. The control points 1 to
9 and 10 to 18 correspond to the inner and outer trimming curves, respectively. Thus, the numeri-
cal analysis considers both trimming types on the same surface. Other surfaces have degree 3 in the
internal radial direction and degree 2 in the outer radial direction. The associated knot vectors are
E1 ={0.0;0.0;0.0;0.0; 0.11649028; 0.2399796; 0.36862; 0.5; 0.7600204; 0.883509724; 1.0; 1.0; 1.0; 1.0}
and Z9 = {0.0; 0.0; 0.0; 1.0;1.0; 1.0} for the directions with degree 3 and 2, respectively. The
resulting isogeometric model contains 314 collocation points, namely Mesh A. A refined model
obtained by knot insertion in Mesh A produces a second model, Mesh B, with 2122 collocation
points. This application also uses the non-singular version of the IGABEM for trimmed surfaces
(Wang; Benson; Nagy, 2015), in which initially the Greville Abscissae strategy places the colloca-

tion points, and they are moved outside the boundary along the normal outward direction. This
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adjustment is based on a percentage of the characteristic length of the knot span in the physical
space, being the knot span area divided by the length of a diagonal mapped in the parametric
space and measured in the physical space. In this application, this percentage is 10%, and fig. 22
illustrates the collocation point positions for both Meshes A and B. In addition, analyzing this
application using the singular version of the IGABEM enables a comparison between these
strategies. For this approach, fig. 23 depicts the placement of the additional collocation points

on the trimmed surfaces for Mesh A.

Figure 21 — Thick-walled quarter-torus isogeometric mesh.

1

Source: The author.

Table 2 — Control points and weights of trimming curves used in planar faces of the thick-
walled quarter-torus.

Number & & w  Number & & w
1 0.5 0.9901961 1.0 10 0.745098 0.5 1.0
2 0.009803922  0.9901961 § 11 0.745098  0.254902 g
3 0.009803922 0.5 1.0 12 0.5 0.254902 1.0
4 0.009803922  0.009803922 § 13 0.254902  0.254902 ?
5 0.5 0.009803922 1.0 14 0.254902 0.5 1.0
6 0.9901961  0.009803922 % 15 0.254902  0.745098 g
7 0.9901961 0.5 1.0 16 0.5 0.745098 1.0
8 0.9901961 0.9901961 § 17 0.745098 0.745098 ?
9 0.5 0.9901961 1.0 18 0.745098 0.5 1.0

Source: The author.

The validation of the results in this application involves a comparison of solutions between
the trimmed IGABEM model and a Finite Element (FE) model using the ANSYS. The reference
FE model has 76,622 nodes and 51,295 20-node three-dimensional quadratic elements (SOLID
186), in which fig. 24 illustrates its mesh.
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Figure 22 — Position of collocation points for Meshes A and B using the non-singular
IGABEM approach with trimmed surfaces for a thick-walled quarter-torus.
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(a) Mesh A

Source: The author.

Figure 23 — Relocated collocation points in the NURBS parametric space of the trimmed
surfaces for a thick-walled quarter-torus.
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Source: The author.

Figure 25, fig. 26, and fig. 27 depict the mechanical response in terms of total displacements
for the FE model, Mesh A, and Mesh B, respectively. Notably, the displacements of the reference
and both trimmed non-singular IGABEM models agree, even for the coarsest one, which attests
to the accuracy of the proposed strategies for considering two trimming curves at the same face.

Figure 28 presents the total displacements of Mesh A considering the singular approach of the
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Figure 24 — FE model reference model of the thick-walled quarter-torus.
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trimmed IGABEM formulation, in which all collocation points lie on the boundary, with the
adjustments proposed in section 3.3. The results demonstrate that this model slightly deviates
from the reference solutions, which indicates that the repositioning strategy is not successful
in the case of two trimming curves on the same face. The algebraic system for Mesh B in the
singular approach does not produce reasonable results, suggesting that the current formulation

lacks robustness in this case and requires further investigation.

Figure 25 — Total displacements: FE model.
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Finally, fig. 29 and fig. 30 present a comparison of displacements and stress compo-
nents along an arch with radius 74 = 11.25 at the z3 coordinate, from (0.0; 11.25; 0.0) to
(11.25; 0.0; 0.0). The responses of Meshes A and B in the nonsingular version of IGABEM with

trimmed surfaces closely match the reference solution, confirming the capability of this version
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Figure 26 — Total displacements: Mesh A.
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Figure 27 — Total displacements: Mesh B.
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of the trimmed IGABEM in capturing a purely three-dimensional response. The graphs also
presents the results for the singular version of the IGABEM with trimmed surfaces. The results
corroborate that this formulation has not been able to precisely capture the mechanical behaviour

of this application in comparison to the non-singular version.
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Figure 28 — Total displacements: Mesh A in singular approach.
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Figure 29 — Displacements along arch: FE and trimmed IGABEM models.
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Figure 30 — Stress components along arch: FE and trimmed IGABEM models.
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3.5 Challenges and limitations of trimmed surfaces on IGABEM

This thesis performs a preliminary study on the incorporation of trimmed surfaces into the
IGABEM for the elastic analysis of components. Based on the numerical applications presented,
this task is successful for simple geometries, especially with the non-singular version of IGABEM.
In this scenario, the numerical implementations for incorporating trimmed surfaces into the
IGABEM allow a critical review of the method in this context. Particularly, the complexity in
importing the geometry, the trimming effect, the need for additional collocation points in the
system assembly, and the search for the best geometric placement of these points pose challenges
for the general use of the trimmed IGABEM formulation. This section discusses each of these

topics.

Firstly, the trimming operation on CAD models requires an identification step for its
coupling with the IGABEM. This study considers the possibility of more than one trimming
curve on the same set, in which each curve ends either inside a knot span or at its edges. When
the endpoint lies inside a knot span, the need for several geometric adaptations in this region
hinders its generalisation for more than one endpoint in the same knot span. However, this study
does not consider two or more trimming curves at the same knot span, since it requires high

complexity alterations in the numerical implementation.

The trimming effect is a matter of concern in IGA with trimmed surfaces. This phe-
nomenon involves the direct exclusion of the support of a basis function in the trimming operation.
Wang, Benson and Nagy (2015) discusses how this effect occurs when the remaining support is
too small in comparison to its untrimmed size. This results in a significantly smaller contribution
by orders of magnitude. Consequently, conditioning issues arise in the algebraic system of the
trimmed IGABEM due to this effect.

The use of more collocation points than the minimum required by the formulation also
affects the robustness of the trimmed IGABEM. Naturally, using this greater number of collocation
points demands the numerical integration of the boundary, which impacts the computational
cost of the method. In addition, the sub-optimal placement of these points also results in a lower
overall quality of the numerical response, even when more points try to represent the altered knot
spans. During the numerical tests, the further the points remain from the positions determined
by the Greville Abscissae, the better the results are. In this context, this topic remains open and

it and remains relevant for future investigation.
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4 HEAVISIDE ENRICHMENT FOR DISPLACEMENT DISCONTINUITIES IN
CROSSED SURFACES

This chapter presents the development of the enrichment formulation to introduce a
discontinuity in the displacement field on the external boundary where cracks intersect. In
standard IGABEM modelling, mesh generation must account for two NURBS surfaces sharing
an edge aligned with the intersecting crack to capture the strong discontinuity along this edge.
However, CAD model construction commonly represents the external boundary while neglecting
its intersection with cracks. Moreover, for crack growth analysis it is impractical to discard
and rebuild the NURBS surface parametrisation at each crack increment. In this context, this
study proposes the enrichment of the displacement field by the Heaviside function to dismiss the
re-meshing task required in the numerical analysis of cracked solids. This approach is novel in
IGABEM since there are no other studies that incorporate this discontinuous behaviour at the

external boundary triggered by the crack.

In this context, this chapter presents the displacement field enrichment and its implications
on the algebraic system since they introduce new unknown coefficients in the approximation.
Supplementary equations restore the square system, and this study proposes two distinct
approaches to determine them. In addition, the enrichment scheme raises some implementation
challenges such as identifying intersected knot spans and their numerical integration. Three
numerical applications demonstrate the robustness and efficiency of the developed scheme,

highlighting its capabilities within the context of fracture mechanics.

4.1 Displacement field enrichment

The enrichment strategy expands the standard isogeometric displacement approximation
eq. (2.28) by introducing additional displacement coefficients E,f and its product with the

Heaviside function 2 and the basis function as follows:

(6, &) = Zw £,6 dk+2 (€1,0) — ) 67" dy (4.1)

in which u} (&1, &) represents for the displacement at the enriched NURBS surface v . The
Heaviside function J# assumes the value —1.0 before the crossing and 1.0 after it. In addition,
nzf represents the number of enriched functions in the patch . The term J%, is the Heaviside
function at the corresponding collocation point « and its subtraction from the enrichment
function results in the shifting approach (Belytschko et al., 2001). This proposition avoids the

need for blending elements since the shifting removes the support at uncrossed knot spans.

Figure 31 illustrates the construction of an enriched basis function ¢4 of a NURBS surface
of degree 2 in both parametric directions and knot vector Z; = E9 = {0.0;0.0;0.0;1.0;1.0; 1}.
The collocation point of this basis function is at the parametric coordinates (£1,£2) = (0.9;0.1).
The crack has a parametric equation of &, = 0.44 % & + 0.23 to represent its intersection, in
which the region £ < 0.44 * & + 0.23 assumes .#” = —1.0. In this context, fig. 31(a) represents
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the standard basis function, fig. 31(b) is the function J# — 7 and fig. 31(c) illustrates the final

enrichment function.

Figure 31 — Shifted Heaviside function.
(a)
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Source: The author.

The introduction of the expanded approximation for u} (eq. (4.1)) on the BIEs leads to

the modified discretised equations:



73

NS
o (R Z &1 (&) d? + Z T;d) + 3 Tueldy = Z Utepf
=1 =

n'Y
can(XT) Y GIT R + ek Z dL
a=1
+ Z T30 d] + Z Tygdy = Z Uil (4.2)
13 s 5 1 5
B Dbl &) - 3 > &)
a=1 a=1
NS
+ng(X Z Sk@dﬁ + ne(X7) Z &1}2@ k =ny(R Z DZZ'Y
v=1

in which solely Ty, and &1227 emerge from enrichment function influence, being:

nks TL%
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The shifting procedure results in having an enrichment function being zero at the
collocation point. This removes the requirement for the SST on new integral. Consequently, the
SST for the S* kernel does not require the first derivative of the enrichment function, which
constitutes an advantage of this approach compared against the use of unshifted enrichment
functions. Additionally, the influence of the Heaviside enrichment on the jump term cancels out

as a consequence of the shifting procedure.

Another aspect of the integration of the kernels in eq. (4.3) is its discontinuous nature over
the crossed knot-span. In this case, as standard for the GFEM/XFEM (Béchet et al., 2005),its
accuracy depends on an element subdivision scheme to correctly account for each continuous
contribution. The generation of a cell-based subdivision and integration follow the ideas for
the trimmed knot spans in the trimmed IGABEM. In addition, the polar integration strategy
computes the influence for both the enrichment term and the standard IGABEM contributions

in intersected knot spans.

The definition of the enriched basis functions is directly related to the number of added
degrees of freedom. The set ¢:§%ﬁ consists of all non-null basis functions of each knot-span crossed
by the crack. The implementation details associated to this task in the isogeometric context
are presented in section 4.3. A key complication is that the introduction of the unknowns E,f
does not naturally come with additional equations, which leads to an ill-posed system containing

an insufficient number of equations. Strategies to obtain the auxiliary equations required for
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this, and other enrichment strategies of this study, are presented in section 4.2. All terms arising
from a standard IGABEM analysis are still present in the augmented system, highlighting the

straightforward introduction of enrichment in pre-existing IGABEM codes.
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4.2 Supplementary equations strategy

The enrichment strategy for strong discontinuities introduces new unknowns to the
algebraic system. Unlike Galerkin-based schemes, the collocation-based IGABEM does not
provide additional equations as a natural consequence of the enrichment. To recover a well-posed
square system, the XIGABEM requires alternative strategies to obtain these supplementary
equations. This study proposes two approaches to determining them in the context of the

Heaviside enrichment for strong discontinuities.

The first approach relies on an Lo projection of the relative displacement between
the intersected external boundary and the crack surfaces. This strategy is analogous to the
scheme proposed by (Peng; Lian, 2022) for applying boundary condition at trimmed surfaces.
By considering a functional J (UZ% — uf) as the Ly norm of the displacement error along the
intersection, its minimisation leads to:

o o
Tl —up) =l —uilli,m

7 c Ea c
— [l — e - upds

in which the integration occurs along the line defined by the crack front that introduces the

(4.4)

Ea
displacement jump at the external boundary. u]  represents the displacement at the external
boundary at the corresponding side of the crack front whose displacement is uﬁ or uy , depending
€ T
on the crack surface. This integral is zero for any vector (du;  — duf,) orthogonal to (u) —uf),

being:

/ W] — ) (6w} — 6u§)ds =0
= [ o7 @] + 0 (s) = ) 67 — 619 (5)df] (45)

(607 ()0 + (o () = ) 6" 5 — (1 (s)8)| ds = 0

The integral must be zero for any arbitrary 5d£ , 53’2 , and 6d£ . This generates more
equations than the number of additional parameters. Considering that the equations generated
from 582 results in the exact number of enriched parameters, this leads to the supplementary

equations of this strategy as:

/S 01" () + () — ) L A — 1 (5)d) | [(H#(5) — Ha) 67 | ds =0 (4.6)

The second strategy consists of applying the TBIE on the collocation points whose
basis functions are enriched. Since these points already have the DBIE used from the standard
IGABEM approach, these points receive both types of equations at the same time. The linear
independence of these BIEs leads to a non redundant set of equations. Additional collocation
points are also a feasible approach (Simpson; Trevelyan, 2011b), but using the TBIE dismisses

the need for an optimal placement for additional collocation points.

However, since the SST of the TBIE requires Holder continuity at the collocation point

(C! continuous at the singular point for the S* kernel), degree 1 NURBS surfaces face an issue for
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receiving this BIE. The Greville Abscissae strategy positions these points where basis functions
may be C, which prevents the sole use of the SST for the precise evaluation of the SST integrals.
To circumvent this limitation, the rigid body motion approach (Brebbia, 1978) computes the
missing contribution. This strategy considers a solid with traction-free boundaries, inducing a
constant displacement u?BM field. Furthermore, the XIGABEM additional paramaters vanish

under this condition as no relative displacement occurs. In this situation, the TBIE reduces to:
( Z S,’gg‘;”) REM _ 0, (4.7)

Since eq. (4.7) is valid for arbitrary ulPM, the associated coefficient term multiplying it
must be zero. Thus, introducing this condition into the TBIE generates the missing contribution

of the S*-kernel integration as:

= (4.8)

nY n?
(—ng Zszg'f) S L)) + can(% )Zdﬁ(@pf
a=1 =
NS

y=1
and is specific to p = 1 or ¢ = 1 NURBS surfaces in the XIGABEM scheme. The algebraic system

incorporates the correction term obtained by eq. (4.7) after the integration of the boundary.

The XIGABEM algebraic system stores the standard IGABEM contribution, eq. (2.36),
and the new parameters arising from the enrichment strategy. The system expands to accom-
modate the influence factors from the integration of the kernels associated with the additional
parameters and the supplementary equations. Thus, the XIGABEM matrix with the Heaviside

enrichment becomes:

(4.9)

H H, d G

T &T T (7 |aT { p }
in which H and G are the standard IGABEM matrices, while d and p represent displacement and
traction coefficients, respectively. The subscript h denotes the contribution from the Heaviside
enrichment for the strong discontinuities in the external boundary. ®T, ®I, and GE contain
terms derived from the supplementary equations. Notably, for the Lo projection strategy, the

matrix GE vanishes.

4.3 Implementation aspects

This section presents the implementation details of the Heaviside enrichment on the
IGABEM formulation. All the required tasks occur before the system assembly, and they are
responsible for defining geometrical aspects of the crack intersection at the external boundary.
These pre-processing tasks are similar to the techniques required by the trimmed IGABEM

approach.

Initially, the algorithm detects which sides of the upper crack face (modelled with the
DBIE) intersect the external boundary. Using the physical coordinates of the side’s midpoint, an
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Figure 32 — Mid-points at each crack edge that search their correspondent external bound-
ary face.
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iterative Newton-Raphson scheme computes the corresponding parametric coordinates at each
NURBS surface candidate. If the point on this candidate surface belongs to an edge, this surface
does not receive the enrichment since the strong discontinuity is already present. Otherwise, the
NURBS surface requires enriching to account for the displacement jump induced by the crack.
After finding the enriched NURBS surface, the algorithm searches for its corresponding lower

crack face (with the TBIE). Figure 32 illustrates this initial search for crossings.

The crack edge projection to the enriched NURBS surface enables further geometric
analysis. This representation involves finding an equivalent NURBS curve mapped onto the
intersected NURBS surface parametric space. This curve has the same degree and knot vector as
the crack edge, and each new control point inherits the weight of its corresponding control point
from the univariate edge NURBS curve. Computing the corresponding control points requires
sampling anchor points with parametric coordinate ts on the crossing crack edge. For each point,
the NURBS interpolation over the crack edge determines its physical coordinates and then an
iterative Newton-Raphson scheme calculates the parametric coordinates (&1 (ts), &2(ts)) of the
anchor point in the intersected NURBS surface. Subsequently, by computing the basis functions
®*(ts) from the corresponding crack edge that crosses the NURBS surface, the search for the
control points (£7,£5) of the projected NURBS curve becomes:

M=

d)k (ts)ﬁ = &1(ts)

=
Il
,_.

(4.10)

M=

¢k (ts)§§ = &o(ts)

i
I

The search for the points where the projected NURBS edge crosses the knot spans occurs
in an analogous manner as the trimming curves intersection with the knot span edges. The two
step algorithm subdivides the projected NURBS curve, and for each subdivision whose edges do
not belong to the same knot span the algorithm of eq. (3.1) finds the parametric coordinate for

the crossing.

The numerical integration of the intersected knot spans requires a sub-cell approach to
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account separately for the contribution of each term arising from the kernels of the enrichment
strategy due to its discontinuous nature. The intersection between the crack surface and the knot
spans allows the definition of each sub-cell, again in a similar fashion to the trimmed IGABEM
procedure. This enables the use of the polar integration strategy presented in section 3.2.2. There
are six possible cases for the generation of the sub-cells in entirely crossed knot-spans, which
are shown in fig. 33. In addition, when the crack ends inside a knot-span there are four possible
sub-cell configurations within the Heaviside enrichment, illustrated by fig. 34. It is worth noting
that in the case of a partial crossing, the Heaviside function assumes null values after the crack
tip. Furthermore, it is possible that two different crack surfaces share a connection inside a
knot-span. In this situation, fig. 35 presents three general cases of sub-division, in which the local
knot-span connectivity is rotated to fit into these cases. The first NURBS curve always crosses
the lower edge and the second NURBS curve can cross either the right, upper or left corner. This

scenario is more common in the crack growth analysis in chapter 6.

Figure 33 — Possible cases for entirely crossed knot-span, in which the crack is indicated
by red and the knot-span sub-divisions are represented in dashed green.
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The Heaviside function J# assumes a constant value over each sub-cell, which allows
its calculation just once for the cell. This eliminates the need for its evaluation at each Gauss
point, accelerating the integration procedure for the associated enriched kernel. Determining ¢
involves the sign of the dot product between the vector extending from a crack endpoint into
the sub-cell interior (fig. 36) and the normal outward vector of the upper crack face. Obtaining
I, of each collocation point follows the s value of the corresponding cell, or adopts a similar

approach when the collocation point is outside any crossed cell.

The visualisation of the numerical results uses a plotting-specific mesh to properly
represent the strong discontinuity at the enriched NURBS surfaces. Gmsh software processes the
the sub-cells and generates a plotting mesh for them, ensuring that the model displays results

consistent with the physical behaviour.
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Figure 34 — Knot-span subdivision for crack ending inside its domains.
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Figure 35 — Subdivision for two different crack surfaces in the same knot-span.
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4.4 Numerical applications

This section presents three numerical applications in which the enrichment strategy
captures strong discontinuities induced by cracks, eliminating the need for conformal meshes.
The first application is a cube with an initial notch and subjected to rigid body motion in each
portion. Next, the second numerical example addresses the mechanical analysis of a cylinder
with an initial crack, in which the isogeometric formulation exactly represents its geometry with
degree 2 NURBS surfaces. Lastly, the numerical analysis of a cracked prism under tensile loading
examines the accuracy of the XIGABEM for strong discontinuities within the context of fracture

mechanics.
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Figure 36 — Definition of auxiliary vectors for the calculation of 7.
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4.4.1 Split test of notched cube

The first numerical application of the XIGABEM formulation for strong discontinuities
consists of a cube with a side length of 10.0 (length units) and a notch, as illustrated in fig. 37. The
boundary conditions are u; = us = ug = —1.0 at the face with z3 = 0.0 and u; = uo = ug = 1.0
at the face with s = 10.0. These prescribed displacements induce rigid body motion in each
portion of the cube, requiring the enrichment parameters to correctly model a displacement
discontinuity along the crack. Since this is a simple mechanical case, it allows the analysis of
different crack configurations and their effects on numerical integration and precision of the
response. The crack angle varies from 0.0° to 30.0° in increments of 10.0°, and its centre of

rotation is at x3 = 6.0. The material properties are £ = 1000.0 and v = 0.0.

The isogeometric discretisation adopts three meshes, in which 6 NURBS surfaces of
degree 1 define the external faces of the cube and 2 NURBS surfaces of degree 2 model the crack
surfaces. Figure 38 illustrates the collocation points placement for meshes A, B and C, in which
Mesh A is the coarsest, mesh B has intermediate refinement level and mesh C is the finest one.
The number of collocation points for each mesh is 126, 222, and 686, respectively, regardless of
the crack angle, as the discontinuity and external meshes remain decoupled in the XIGABEM
approach. In this application, the strategy for the additional equations is the minimisation of the

relative displacement between the crack and the external boundary.

This application analyses the influence of different crack angles on the formulation’s
ability to represent the displacement jump at the external boundary. In this context, Figure 39
illustrates the intersection between the knot spans and the crack, which tests all possible sub-cells.
In addition, fig. 40 illustrates the deformed configuration for each crack angle. The results
indicate agreement between the numerical and theoretical responses, regardless of the angle.

It is emphasised that the discontinuity lies across the central part of the patch, so that some
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Figure 37 — Geometry and boundary conditions of notched cube under split test.
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Figure 38 — Position of collocation points for meshes A, B and C of the notched cube.
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elements are split into two parts in the deformed geometry. The plane of the discontinuity is not

represented in the meshing, but is entirely produced using the Heaviside enrichment.

The relative La norm of error in displacements allows the analysis of the numerical
response quality in this application since it has an analytical solution. Figure 41 presents this

error measurement for all meshes and angles examined in terms of the relative Lo norm of
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displacements. All errors remain below 1076 for Mesh A, indicating a suitable response even
for a coarse mesh. Meshes B and C exhibit errors similar to Mesh A, further attesting to the
formulation’s accuracy in this application. Another notable aspect is the error behaviour when
the angle varies in the same mesh. This occurs due to variations in sub-cell shapes and their
distortion depending on the cut. Nevertheless, this variation does not affect the overall response
quality, attesting to the success of the strong discontinuity insertion in the XIGABEM approach

in capturing the split in this application.



Figure 39 — Crack position in each surface with z; = 0.0 and x; = 10.0.
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Figure 40 — Deformed configuration of notched cube under split test: mesh C.
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Figure 41 — Relative Ly norm of error in displacements for split test in notched cube.
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4.4.2 Split test of a cracked cylinder

The second application of the XIGABEM formulation for strong discontinuities involves
a split test of a cracked cylinder with radius R = 10.0, height H = 10.0 and a circular crack
at 3 = 1.1, as shown in fig. 42. The advantage of using an isogeometric description lies in its
exact representation of the cylinder via a simple degree-two NURBS surface, in contrast to the
impossibility of the Lagrangian description in performing this role in an exact manner. The
boundary conditions inducing the split between the portions are u; = us = ug = 1.0 at the upper
face (z3 = 5.0) and u; = ug = uz = —1.0 at the lower face (z3 = —5.0). The material properties

are F = 1000.0 and v = 0.0 for the Young Modulus and Poisson ratio, respectively.

Figure 42 — Geometry of cracked cylinder under split test.
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Source: The author.

The isogeometric discretisation utilises a mesh with a total of 24 NURBS surfaces, as
depicted in fig. 43a. Each circular face has 5 NURBS surfaces with degree 2 in both parametric
directions. The modelling of the lateral parts of the cylinder use four NURBS surfaces of degree
1 in the longitudinal and degree 2 in the circumferential directions. This parametrisation leads
to a XIGABEM model with 236 collocation points, whose placement is illustrated in fig. 43b.

The deformed shape presented in fig. 44 demonstrates that the XIGABEM formulation
successfully captures the split between portions using the enrichment strategy through the use of
TBIE as supplementary equations. In addition, section 4.4.2 contains the relative Lo norm of
error in displacements for this application and the condition number for both strategies used to
recover the square system. In both scenarios the error is less than 2 x 10~%, which attests to the
formulation’s robustness in addressing a cut curved NURBS surface. Furthermore, the condition
number comparison indicates that the choice of strategy does not significantly alter its effects
on the algebraic system. Thus, both strategies emerge as viable alternatives to resolve the rank

deficient system issue initially generated by the enrichment approach.
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Figure 43 — Isogeometric discretisation and placement of collocation points for split test
in cracked cylinder.
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Table 3 — Comparison between the relative Ly norm of error in displacements and condition

number for each strategy of supplementary equations in the split test of a cracked
cylinder.

Strategy llel| L, Condition Number

TBIE collocation points 1.47x107% 1.15x10°
4.43x10°

Weak form compatibility 1.37x107%
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Figure 44 — Deformed shape of cracked cylinder under split test.

Source: The author.
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4.4.3 Prism with initial crack

The third application of the XIGABEM for strong discontinuities, which eliminates
the re-meshing task, consists of a cracked prism subjected to a uniform traction ps = 1.0 and
p3 = —1.0 at the upper and lower faces, respectively. The prescribed displacements at the centre
of the back face (z; = 10.0, 0.0 < z9 < 10.0, 9.0 < x3 < 11.0) prevent rigid body motion
by enforcing u; = uy = usz = 0.0. Figure 45 depicts its geometry and boundary conditions,
where the crack angle takes four different values in this analysis: 8 = 0.0°, 8 = 15.0°, 8 = 30.0°,
and 6 = 45.0°. These inclinations necessitate an essentially three-dimensional formulation for
determining its mechanical fields. In addition, the material properties are £ = 100.0 and v = 0.0

for the Young modulus and the Poisson ratio.

Figure 45 — Geometry and boundary conditions of prism with initial crack.
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Source: The author.

The reference solution is a standard IGABEM numerical analysis based on a discretisation
with 15 NURBS surfaces, as illustrated in fig. 46 for 8 = 0.0°. The crack surfaces have degree 2
in both parametric directions, whereas all other faces use NURBS surfaces of degree 1. Notably,
the standard IGABEM modelling requires conformal meshing for all intersected faces, which is
required for all angles under study. Additionally, this analysis uses three different meshes for
each crack angle, where meshes A, B, and C correspond to the coarsest, intermediate, and finest
meshes, respectively. Table 4 presents the number of collocation points for each mesh and each
crack angle. Furthermore, fig. 47 illustrates the knot spans of Mesh C for each inclination, where

a slight distortion occurs in the knot spans of the frontal face.
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Figure 46 — Isogeometric discretisation for prism with initial crack using the standard
IGABEM.

Source: The author.

Table 4 — Number of collocation points for each reference mesh of prism with initial crack.

Angle Mesh A Mesh B Mesh C
0 =0° 363 1121 3351
0 =15° 375 1007 3351
0 = 30° 375 1007 3351
0 = 45° 375 1121 3885

Source: The author.

The XIGABEM model uses 10 NURBS surfaces for the numerical modelling, where 8
surfaces represent the external boundary and are degree 1 in both parametric directions, while the
crack surfaces have degree 2. Figure 48 depicts the discretisation for this XIGABEM model. The
external boundary does not vary with the crack inclination, as the enrichment strategy removes
the need for mesh alignment. The XIGABEM formulation enforces displacement expansion at
the lateral faces (x2 = 0.0 and x9 = 10.0), as well as at the front face (1 = 0.0). In this context,
meshes A, B, and C have 349, 869 and 3301 collocation points, respectively. The placement of
these points for 0 = 30° is illustrated in fig. 49. Notably, the XIGABEM approach is superior to
the standard IGABEM counterpart in this analysis, as it only requires a single discretisation of

the external boundary regardless of the crack angle.

Figure 50 illustrates the total displacement field for both the reference and the enriched

models magnified by 5 times, for all inclination angles in Mesh C. This comparison confirms
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Figure 47 — Knot spans reference model (mesh C) for prism with initial crack.

<

60=0° 0 =15°

6 = 30° 0 = 45°
Source: The author.

the expected mechanical behaviour of the XIGABEM formulation, while the introduction of the
Heaviside function in three different faces results in the displacement jump induced by the crack.

In addition, the displacement values are consistent, corroborating the robustness of XIGABEM.

The strain energy comparison illustrated in fig. 51 allows the assessment of the accuracy
of XIGABEM in this application. In this case, the strain energy is equal to the external work
done at the upper and lower faces of the prism. Each enriched model yields values similar to its
equivalent IGABEM model, with a relative difference of approximately 10~3 for Mesh C. The
XIGABEM approach achieves results comparable to the standard IGABEM while using fewer
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Figure 48 — Isogeometric discretisation for prism with initial crack using the XIGABEM
for strong discontinuities.

Source: The author.

collocation points, which is another advantage of this formulation, in addition to eliminating the

need for mesh alignment.
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Figure 49 — Placement of collocation points of prism with initial crack for the XIGABEM
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Figure 50 — Deformed shape of prism with initial crack: standard IGABEM vs XIGABEM.
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Figure 51 — Strain energy comparison between the XIGABEM and the IGABEM models.
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4.5 Partial conclusions

The first enrichment proposition of this thesis consists of the Heaviside enrichment
presented in this chapter. Its main purpose is to represent the discontinuous displacement at the
crossing between the external boundary and cracks. Consequently, this enrichment eliminates
the need for mesh alignment at the intersection, which allows the direct use of the original
CAD model in the fracture analysis. The displacement approximation of surfaces intersected by
cracks receives an enrichment term with the Heaviside function. The shifted enrichment removes
blending elements and does not introduce SST treatment for the arising kernels. In this context,
the enrichment approach introduces additional parameters to quantify the displacement jump
along the intersected surface. As a consequence, the addition of unknowns requires new equations
to recover a square system. This study proposes two different strategies for this task. The first
scheme consists of a minimisation of the relative displacement between the intersected surface
and the crack surface, measured in terms of an Lo error. The second strategy uses the Traction
Boundary Integral Equation at the same position as the collocation points whose basis functions
were enriched. Several implementation aspects are important for the success of the incorporation
of this enrichment scheme into existing IGABEM codes. Particularly, the detection of the
intersection between the crack and the external boundary is necessary to define the sub-regions
in which the Heaviside function assumes different values. The numerical integration of these
sub-cells considers a polar strategy previously used for trimmed knot spans. Numerical results
demonstrate the ability of the Heaviside enrichment function for representing the displacement
discontinuity induced by the crack, while reducing the number of degrees of freedom. In this
context, the XIGABEM formulation successfully eliminates the need of conformal meshes in the

numerical analysis of three-dimensional cracked solids.



97

5 WILLIAMS SOLUTION-BASED ENRICHMENT STRATEGIES

The enrichment strategy using the Heaviside function from chapter 4 successfully intro-
duces displacement discontinuities at the external boundary when intersected by cracks. However,
An asymptotic behaviour occurs near the crack front that neither the standard IGABEM nor
the XIGABEM with the Heaviside enrichment can represent. To address this limitation, this
chapter proposes incorporating the first term of the Williams solution expansion as an enrichment
function for the displacement field. This strategy enables accurate capture of the /7y asymptotic
behaviour induced by cracks (being r; the distance between the point and the crack tip), which
is consistent with LEFM. In addition, this enrichment introduces the displacement jump on faces
on the external boundary that are crossed by cracks. In addition, it enables the direct extraction

of the SIFs when applied to crack surfaces.

This chapter begins with the displacement expansion based on Williams solution for
faces in the external boundary that are crossed by cracks, its effects on the algebraic system,
and the strategy for obtaining the supplementary equations. Subsequently, the approach for
enriching crack surfaces is explained, as well as its impact on the BIEs and the strategy to
restore a well-posed algebraic system. Since the IGABEM requires the treatment of the singular
integrals, the next section presents the regularisation of the enriched kernels using the SST.
Additionally, the Frenet-Serret frame (Frenet, 1852; Serret, 1851) defines the rotation matrix
and its derivatives in the isogeometric framework. Four numerical applications demonstrate the
robustness and accuracy of this proposition, achieving higher convergence rates while requiring
fewer collocation points compared to the BEM and the standard IGABEM.

5.1 Lateral face enrichment for /1, behaviour on intersected surfaces

Edge cracks present an enormous challenge for boundary-based methods, because of the
requirement of aligned meshes between the external boundary and crack surfaces. In addition,
the displacements over the crack surface exhibit a classical /r; behaviour found in LEFM, with
r being the distance from the crack front. Standard NURBS basis functions and the Heaviside
enrichment cannot precisely capture this for the external boundary partially cut by the crack,
which leads to a sub-optimal convergence. In this context, this study proposes a displacement field
enrichment for partially cut surfaces based on the leading order term of the Williams expansion

(Williams, 1957). This expansion leads to the augmented displacement field as:

w7 (61,6) = 3 GU(E E)d + Y GL(Er, &) Rty diy (5.1)

a=1 a=1
in which the additional unknowns dAé\Z represent the magnitudes related to the enrichment function
ng. R}, is a rotation matrix from the local coordinate system at the crack front, where ng is
defined, to the global coordinate system, according to fig. 52. The Williams-based enrichment

function, 1, is:
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Figure 52 — Local coordinate system at the crossing between crack and external face.
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in which r; is the distance to the crack tip, ; is the angle between the tangent vector in the
local coordinate system and the vector r¢, as defined using the Frenet-Serret frame (Kiihnel,
2015).  is the Kolosov constant, being k = 3 — 4v for plane-strain and xk = % for plane-stress,
and p = ﬁ is the shear modulus. This proposition is similar to the Oden-Duarte (Duarte;
Babuska; Oden, 2000; Oden; Duarte, 1996) enrichment, but with the major difference that here
all enrichment functions are combined based on the rotation matrix to become a single function

multiplying each additional unknown.

In this study a Williams-based enrichment is applied to NURBS basis functions on the
partially cut surface, which justifies the use of ¢) on both standard and enriched terms of the
eq. (5.1). Then, the substitution of the expanded displacements in eq. (5.1) on the BIEs results
in a similar equation to that in the standard IGABEM, eq. (2.32), but with an additional kernel,

as:
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con(% zw )y + cop(®) Y LK) Rig(R)0], (%)
a=1

+ Z T5d) + Z Tood Z Ul

(5.3)

13N . 13 .
5 2 SR, + 5 D LR Ry (K)o (R
a=1 a=1

NS NS
+ne(R) 3 Sy +ne(®) D2 Sy = ne(® Z DTw
y=1 =1

in which Tyy, and &227 are new kernels originated from the Williams-based enrichment, being:

nkb ny

=> Y / T}.6% Riqtbins JXS dA
ks=1 a=1 (5'4)
’nk5 TL’Y
Sty = Z > / St 0L Rty JE5 dA
=1 a=1

Analogously to the Heaviside enrichment, the Williams-based expansion of the displace-
ments does not change the standard IGABEM coefficients, which are retained in the BEM
matrices, while introducing additional parameters to the discretisation. Thus, it shares the
capability of being directly incorporated into existing IGABEM computational codes. Additional
equations are necessary due to the addition of new unknowns, similarly to the Heaviside enrich-
ment, and this applies the TBIE on the collocation points associated with the enriched basis
functions. Another similarity comes from the discontinuous nature of the term sin g, requiring
integration over a cell-based subdivision, as detailed in section 4.3. In this context, the matrix
form of the XIGABEM algebraic system with the Williams enrichment for partially cut faces is

similar to the XIGABEM with strong discontinuities in the displacement field (eq. (4.9)) as

i

in which the new matrices HT, HtT , and GT correspond to the influence coefficients arising

G

arl{p) (5.5)

from the application of the TBIE on the collocation points associated with the enriched basis

functions. The vector d stores the additional enrichment parameters.

In this study, the main focus is the first development of the extended IGABEM for
3D fracture mechanics and the calculation of SIFs from the crack front enrichment depicted in
section 5.2. A simple unshifted Williams enrichment is applied on the partially crossed faces. Since
the shifting approach has not been applied for the Williams solution enrichment, singularities
arise and they must be treated accordingly by using the SST, as detailed in section 5.3. Then,
derivatives of both 143 and Ry, are required with respect to the parent coordinate space, where

integration is carried out.
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5.2 Crack front enrichment for the direct SIF extraction

The enrichment strategy for the introduction of SIFs as additional unknowns consists
of using the Williams-based enrichment function (eq. (5.2)) on the crack surfaces. In addition,
these parameters are interpolated by uni-directional NURBS basis functions over the crack front,

which leads to the following enriched displacement field for the crack surface:

+/- +/-
wp (6,6) = Zw (€1.&) d5+2¢cf DR U K (5.6)
in which ¢¢f(t) is the uni-directional NURBS basis functions over the crack front cf that in-
terpolates the SIFs coefficients K #¢f This set of basis functions comes from the corresponding
univariate NURBS curve in the crack front that generates the crack surface v1t/~. Thus, each
crack front introduces n), additional unknowns related to the distribution of SIFs along the front.

The incorporation of eq. (5.6) in the BIEs yields to:

of

cor (X ZW )y, + con(%) Z¢ Ry (R)0 0y (R) K3 f
ISR ES ST wr

(5.7)

Z Z qw 5‘( p] 4= Z ¢Cf Rcf 5\() ()A()KS cf

NS
(X zs,dj dp +ne(%) Y S350 K = (%) ZDZZ”
7=1

in which, analogously to both Heaviside and Williams-based enrlchment, a new kernel arises in
each BIE as:

v(eh)
Tys

(cf
=5 [ Tadt Rk T da
ks=1 s=1 (5.8)

y(ef)
nkq

sc c (cf
JM;] Z Z/SMJ¢ fR y ) (Cf)dA

ks=1 s=1

This integration takes place at the enriched crack surface. The kernels make use of the
uni-directional coordinate t for the crack front projection at each Gauss point, which is obtained

by a point projection algorithm (Piegl; Tiller, 1996).

Special care must be taken in the rotation matrix definition. For a crack front, fig. 53
defines the local coordinate system of the Williams solution, which may change depending on
the crack geometry. This thesis applies the Frenet-Serret frame (Frenet, 1852; Serret, 1851)
to accurately determine both the rotation matrix and its derivatives based on the crack front

NURBS parametrisation, as shown in section 5.4. For flat cracks, the rotation matrix is simplified
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Figure 53 — Local coordinate system for crack front enrichment.
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Source: The author.

by having T parallel to the crack front, N aligned to the normal outward vector of the upper
crack surface (which receives the DBIE), with B=TxN.

Besides allowing a direct determination of the SIFs, and thereby precluding post-processing
tasks, this strategy also introduces the /7 behaviour in the formulation, giving rise to accuracy
improvements. The enrichment is applied over the entire crack surface, instead of solely at the
portion closest to the crack front. Extending the enrichment over the whole crack surface gives

rise to no additional degrees of freedom.

In this matter, it is worth mentioning the differences between the approach herein and
the special crack tip element successfully proposed by Li, Mear and Xiao (1998) in the Symmetric
Galerkin BEM approach. Their study proposed a different set of basis functions containing the
/Tt behaviour for the crack front elements, which culminates in a change in the construction
of the H and G influence matrices. On the other hand, the present study allows the direct
introduction of the SIF parameters without changes in the existing H and G matrices from
IGABEM.

For the direct SIF enrichment scheme applied on the crack surfaces, the additional
equations are obtained by considering displacement compatibility at the crack front taken by
minimising a functional. This procedure is analogous to the first strategy for the supplementary
equations in the Heaviside enrichment context (section 4.2). Both upper and lower crack faces
are expected to experience identical displacement at the crack front. However, the discontinuous
BEM approach for fracture mechanics cannot guarantee this behaviour. In two-dimensional
analysis, it has been shown that a ‘tying equation’ enforcing displacement continuity at a crack
tip is a simple approach to provide an additional equation, but it is also advantageous in that
the unknowns K f\/[cf from eq. (5.6) become good approximations to the SIFs (Alatawi; Trevelyan,
2015; Andrade; Leonel, 2020). In the three-dimensional scope that is the focus of the current
work, the crack front is a curve, and a weak-form strategy is presented to enforce compatibility

as:

[ e @ e - o @ ed | o o, (5.9)

in which I'¢ is the line describing the crack front. <Z~>§f is the weighting function chosen for this
weak-form compatibility; here it is the NURBS function that interpolates the SIFs. The matrix

form of the algebraic system with the Williams-based enrichment for the crack front is:
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H H| | d G
5 0 & 0{p} (5.10)

in which the sub-matrix Hg contains the contributions from the new XIGABEM integrals, ®,
corresponds to the coefficients from the compatibility equations eq. (5.9) and K contains the
new enrichment parameters. The boundary condition application results in an algebraic system

in its form Ax = b, and a standard solver computes all the unknowns of the vector x.

The construction of the enrichment space results in the terms K, arising in the solution

vector x, being direct approximation factors of the SIFs as:

K = 3 a0kt (5.11)
s=1

thus dismissing a post-processing task that can be computationally demanding, such as the

J-integral, or approximated techniques such as the Displacement Extrapolation Technique.

5.3 Regularisation of the singular enriched kernels for the Williams-based enrichment

Boundary integral equations have singular kernels due to the nature of the fundamental
solutions. The method adopted for their regularisation is based on the Singularity Subtraction
Technique (Guiggiani; Gigante, 1990; Guiggiani et al., 1992). In the XIGABEM context, the
new kernels introduced by the expansion of the displacement field for each enrichment strategy
herein proposed also inherit this singular behaviour. Thus, SST must be also applied to them,
and this is performed by an analogous procedure that consists of considering the augmented
basis function as the basis function in the SST. For the Displacement BIE, the strongly singular
kernel becomes regular by the expansion in a Taylor Series around the collocation point, which
results in evaluating the augmented kernels directly at this position, without requiring any
derivatives. On the other hand, the Traction BIE has a hypersingular kernel of order O(r~3),
which requires the expansion of the basis functions in a Taylor Series to its second term as
& = O(%) + p®L(X) + O(p?). It is important to mention that the components of ®1 are:

o= % cos(6) + %
0€1 1&1(%),62(%) 0&a

sin(f 5.12
@) e S 0) (5.12)

in which 6 is the angular value associated to the polar coordinate transformation of the SST. In
the context of new kernels, their regularisation takes place by the proper expansion of the enriched
basis function in Taylor Series and its further incorporation in the SST expressions. Then, the
SST of the arising kernels solely requires the substitution of the standard basis functions and their
first derivative by the new augmented basis functions utilised. Therefore, expanding eq. (5.12)

for each enrichment strategy applied in this study is sufficient for SST process.

5.3.1 Partially cut faces: Williams-based enrichment

For partially cut faces, the &Z@f kernels of eq. (5.4) require regularisation of their O(r=3)

hypersingular nature. The corresponding augmented basis functions are:
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anr = Do Rgins (5.13)

and these require expansion in a Taylor series in polar coordinates for the SST, as:

Ot oY o
oat = SRRy i+ 00 S + Gy 2
¢! d aR o, ‘
Dot _ 0% g s + 150 + 6 Ry
& ) 082 02
in which, for this enrichment, 8;%’;" = aai’;q = 0 since the local coordinate system is fixed at

the crack tip. The derivatives of the NURBS basis function are well known from the standard
IGABEM, while the derivatives of the enrichment function require further development. Initially,

a chain rule enables the derivative in the NURBS parametric space as:

Mo 81@1\4% . O ar 08
851 651 651 852 851

(5.15)
g Ogus 061 Ogps 06
852 851 852 852 852
but due to the relationship between the parametric space and the Gaussian space, g—? = g—? =0.
2 1

In addition, the Williams-based enrichment function is written in polar coordinates centred at
the crack tip. This requires a sequential chain rule for both r; and 6, coordinates to obtain the

derivatives in the Gaussian space, as:

6§J or 85] 8@ 00, 85] 853

for the evaluation of the derivative in respect to the Gaussian coordinate in the j direction and

8? comes from eq. (2.31). Furthermore, the derivatives of the Williams enrichment function with
J

respect to the polar coordinates are:

(91/1(1 M 1

ore — 2r

Ao (o (] (3]
0

2 2
OUn11 = 1 {1 CoS <0t> {m + 1+ 2cos? (t)] — sin <9t> sin Gt}
06,  2uV2r 2 2 2 2 (5.17)
Ovb1 :i Tt{lcos (0t> |:I€+1—2COSQ (et)]—i—sm <9t>sin9} ‘
00, — 2u\ 2rw |2 2 2 2 ¢
Oy 1 [y (1 0, .o (0 0\ .
2, _2M 27r{2 1n(2)[/1—1—2sm (2”4—008(2)81116&}
Oburr _ L [ < 04 >
8915 1% 2 2

Lastly, r; and 0; are determined based on the position of the crack tip x°t as:
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3
ro= il = || Yo - )2
k=1 ) (5.18)
. . N7
0; = sign {(N X %) 'T} arccos ( Tt)
Tt

in which N is the vector parallel to the crack and T is the tangent vector, both at the crack tip
and obtained by the Frenet-Serret frame. Then, their derivatives in respect to the parametric

coordinates are:

8rt 1 & ct & 8¢Oé [e 1 > ct 87‘_,;
— = — - — P = — Tk — Ty ) 7
ag] - kzl( k )agl 5] k - kgl( k )863
- Or - 0
oo, —sian [(¥ x )T V"o~ (N ‘ 85) (5.19)
0¢; AN (re)?
- (5)

5.3.2 Enrichment at the crack front for the direct extraction of SIFs

For the enrichment at the crack front that directly provides the SIFs as unknowns of the
XIGABEM system, the local coordinate system is no longer constant over the enriched patch.
Additionally, there is a uni-directional function at the crack front to interpolate the additional
parameters that are proxies for the SIFs. In the context of regularising the kernels from eq. (5.8),

the corresponding augmented basis function is:

and, for the SST, its first derivative in the Gaussian coordinate direction j becomes:

8qbskM _ 8¢s cf kl] Tcf 9 ;M
o 9§ Ryq¥onr + 95 o€, Yorr + 95 Big 9%, (5.21)

in which both gzggf and Ry, are functions of the uni-direction parametric coordinate ¢ at the crack

front. This requires a chain rule in terms of this coordinate as:

09" _ dof! ov 0g;
65} dt 85] afj
ORkg _ dlyg Ov 9§

85]» o dt 8@8%

(5.22)

dés

The terms
and the rotation matrlx at the crack front, respectively. In addition, the expression for @
derives from the orthogonality between the vector 7 and the tangent vector T at the crack front

(7 - T = 0). It is worth mentioning that, for this enrichment, eq. (5.18) is valid by using z§t as
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Cf( t) and 6; = +7 depending on whether it is a upper or lower crack surface. Then, the first

variation of 7; - T' = 0 becomes:

§(7i - T)=0= 67 -T +73- 6T
<3Tt or or; ) L 0T (5.23)

—0 — 0t | T+r—6t=0
o€ 661 + B, §2+at +7’tat
Assuming that ¢ = t(;,&2), it is possible to write its perturbation in an implicit form as:
ot ot
ot = —066 + 0&s (5.24)
961 &

which may be substituted into eq. (5.23) to give:

77081+ 506 + -

67"15 87“15 07} (
061 &

t . 9T [/ ot ot
b _ — 5.25
96, "1 * 52552” THrige <651 o+ 852552) 0 (63

Equation (5.25) holds for any arbitrary 6&;, ¢ = 1,2. Then, its rearrangement results in:

or;y =
_Zt.T
ot _ 0% - (5.26)
a& @ . f + 7 - aj
ot ot

5.4 Frenet-Serret frame for the rotation matrix and its derivative

The Frenet-Serret frame relates the rotation matrix and its first derivative with the curve
parameterisation, and also the curvature k(t) and torsion 7(¢) properties. In this context, the
definition of the rotation system Ry, from the tangent vector T , the normal vector N and the

bi-normal vector B is:
R=|N B T (5.27)

in which each vector comes from the position Z in the NURBS curve as:

@ x (A" x )

N2\ 22
IIf’II |2 x 2|
. X f”
B = H95 7 (5.28)
- Z
T=—
[12]]
in which & = d—x and @' = €& The first derivative assumes its form in terms of the rotation

a2
matrix R as:

R _

T] ) 0 0 (5.29)
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Finally, the curvature k(t) and torsion 7(t) are:

=i, =2
a(t) = ||$H >ij I
X
i (f” % :Z‘WI) (5'30>
)= ———= 5
& < 2||*

with 77 = % as the third derivative of the NURBS curve with respect to the parametric

coordinate.

5.5 Numerical applications

In this section, four numerical applications demonstrate the effectiveness of the XIGABEM
formulation using the Williams solution-based enrichment function. The first two applications
are a penny-shaped crack and an elliptical crack under remote tension. Their shapes justify
the isogeometric framework, in which NURBS curves of degree 2 can exactly represent their
geometry. Both in-plane and inclined cases are analysed, inducing a mixed-mode response where
all SIFs vary according to analytical solutions. The last two applications address a prism with
an edge crack under two different loading cases: a pure mode I/II/III loading and a uniform
traction load. While the third application has an analytical solution, the fourth is compared with
numerical results from the BEM and the IGABEM.

5.5.1 Penny-shaped crack under uniform traction

The first application of the XIGABEM formulation with the Williams-based solution
as enrichment function is a penny-shaped circular crack with radius R = 1.0 embedded in an
infinite domain, subjected to a remote uniaxial stress g = 1.0, according to fig. 54(a). Since the
Dual BEM formulation herein applied requires the discretisation of the external boundary, the
crack is located inside a cube of side 200R. The material properties are E = 1.0 and v = 0.0. It
is noteworthy that the proper choice of the local coordinate system performs a major role for
the crack front enrichment scheme when its front is curved. Thus, this application allows the
evaluation of the Frenet-Serret frame, especially for mixed mode I/II/III problems. In addition,
the analysis of both in-plane and inclined cracks allows the evaluation of a pure mode I and a
mixed mode I/II/III in a problem whose enrichment function does not match with the analytical
solution. For the pure mode I problem, both SIFs and the us displacement at the crack have a

reference solution (Tada; Paris; Irwin, 2000) as

—2n9(1 —v)oy
— R2 — (22 2
R )

_ 200 (5.31)
T

Kir=Kinr=0

ug (21, T2, 23) =

in which o is the remote traction applied and no is the normal outward vector at each crack

surface. For the crack inclined through an angle 6;, the corresponding SIFs are:
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2
K;= ﬂ\/7TRcos2 0.
T
40‘0

Kip=——"7—
i (2 —v)

VR cos0;sin 6; cos .. (5.32)
4oo(1 —
K= MVWRCOSGZ- sin #; sin 6,
(2 —v)

in which 6. is the angle of the crack front position taken in the crack plane.

Figure 54 — (a) Geometry and loading conditions for penny-shaped crack and (b) Control
points position for penny-shaped crack mesh

SRR =

(a) (b)

Source: The author.

The discretisation adopted for this application consists of an external boundary composed
of 6 NURBS surfaces with degree p = ¢ = 1 Constant boundary conditions are responsible for
representing the uniform stress state in the far field, in which the bottom face (x2 = —100.0)
has nil displacements in all directions and there is a traction t3 = 1.0 applied over the top face
(z2 = 100.0). For the crack faces, five p = ¢ = 2 degree NURBS surfaces describe each face, as
illustrated in fig. 54(b). Each of the four patches that compose the circular crown receive the
crack front enrichment, while the central circle remains with only the NURBS basis functions.
The circular crown length is set as R/5, based on the analysis performed with the Displacement
Fitting Technique (Cordeiro; Leonel, 2018), and the crack front increment chosen by Peng et al.
(2017a) in their penny-shaped crack growth analysis. In addition, a Lagrangian BEM analysis
considers a 9-node quadrilateral quadratic element to compare the XIGABEM and IGABEM

results against the conventional BEM.

The in-plane crack deformed shape presented in fig. 55 compares the responses from the
extended IGABEM approach and the standard IGABEM for the most refined mesh. A jump
in the displacement field at the crack front is evident in the standard formulation, in contrast
to the XIGABEM results. For the standard formulation, as previously obtained by Peng et al.
(2017a), the major contribution for the error is at the crack front. The absence of a displacement

jump in the XIGABEM solution is a direct consequence of the tying equations.
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Figure 55 — Deformed shape for penny shaped crack using (a) conventional IGABEM and
(b) extended IGABEM

N4 Y
A~ & v &
X2 displacement x2 displocemenf
-1.277 0.5 0 0.5 11.277 -1.277 0 0.5 11.277
s | o _ " —
(a) Conventional IGABEM (a) Extended IGABEM

Source: The author.

The convergence analysis in the relative Lo norm of displacement error presented in
fig. 56 demonstrates the improvements in the convergence rate for the XIGABEM responses
against the standard IGABEM and the Lagrangian BEM. By adding a small number of degrees
of freedom, in addition to directly returning the SIFs, there is both a reduction in the relative
Lo norm of displacement error and an increase in the convergence rate. These outcomes are
associated to the asymptotic behaviour introduced by the enrichment, as well as the tying at
the crack front. Optimal convergence for collocation methods in the BEM context still has open
questions (Sauter; Schwab, 2011; Marussig; Hiemstra; Hughes, 2018), but for a smooth problem,
Marussig, Hiemstra and Hughes (2018) achieved convergence rates of O(N~P) in the Ly norm,
with IV being the number of degrees of freedom. For fracture mechanics, this behaviour does
not hold, as can be seen in Peng et al. (2017a) and the standard IGABEM simulations used for
comparison in fig. 56 of the present study. On the other hand the XIGABEM approach described
herein delivers improved convergence rates over standard IGABEM, both for smooth solutions

(Marussig; Hiemstra; Hughes, 2018) and for fracture problems.

As widely presented in the literature for the GFEM/XFEM, enrichment strategies can
cause an increase in the condition number, which has the potential to become problematic for
the system solution. Based on the condition number growth shown in fig. 57, it is noteworthy
that the extended IGABEM formulation for the crack front enrichment improves the overall

conditioning when compared against its standard version, instead of worsening it.

Table 5 shows the average relative error for all SIFs to be in excellent agreement with
the reference solution, being below 5.1073 for K. Additionally, Ky and K3 are below 4.10~1°
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Figure 56 — Relative Ly norm of error in displacements for in-plane penny-shaped crack.
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Figure 57 — Condition number growth for in-plane penny-shaped crack.
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Figure 58 — Stress Intensity Factors for penny-shaped crack inclined by /4 rad.
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for all meshes except the most refined one, in which the effect of near-singular integrals on
the evaluation of the BIEs kernels start to influence the overall precision. These results can be
improved by an enhanced integration scheme for those integrals, but this is beyond the scope of

this study.

Table 5 — Average SIFs error for in-plane penny-shaped crack.

Degrees of freedom avg. error in K; avg. error in Ky avg. error in K3

378 4.689e-03 -2.47e-11 -3.00e-13
600 2.936e-03 -4.11e-11 3.67e-12
882 2.267e-03 3.85e-10 -1.59e-12
1224 1.776e-03 -5.09e-12 4.59¢-11
1626 1.432¢-03 4.04e-07 -1.22e-11

Source: The author.

The numerical analysis for an inclined penny-shaped crack permits the proposed formu-
lation accuracy assessment in the mixed-mode fracture response. For ; = 7/4, fig. 58 shows the
SIFs for the most refined mesh. It is noticed that all SIFs vary in agreement with the reference
solutions, with relative errors below 2.03e — 3. Additionally, the relative Ly norm of error in
displacements converges in a faster rate than the SIFs, mainly associated to the correction of the
non-physical displacements at the crack front given by the IGABEM formulation. In summary, it
is evident that the XIGABEM formulation for a circular crack obtains highly accurate results

with an increase of only a few degrees of freedom in comparison to standard approach.
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5.5.2 Elliptical crack under uniform traction

An elliptical crack embedded in an infinite domain and subjected to a far-field uniaxial
stress og = 1.0 is the second application considered for the XIGABEM formulation with the
Williams based enrichment. The crack has semi-major and semi-minor axis dimensions a = 10.0
and b = 5.0, respectively, as depicted in fig. 59(a). Similarly to section 5.5.1, the truncated
domain that represents an infinite medium is a cube with side 20a. In this application, the
mechanical properties are £ = 1.0 and v = 0.3. Besides encompassing all the characteristics of
section 5.5.1 in respect to the definition of the local coordinate system, K is no longer constant,
which constitutes an important behaviour to capture by the enrichment scheme. The analytical

solution for this case, which also considers the inclination angle 6;, is (Tada; Paris; Irwin, 2000):

K= %(1 + 2cos 26;) \/Z{;)@)
_ 00, oy VOTE?b/acos b,
Kir= ?(bm 26;) OB
201 _ N
K= %(Sin 26;) MI} (;t)B?lijln Oc

2
e
a
9 1/4
f(6.) = ls.in2 0. + (Z) cos? HC]

B(k) = (K* = v)E(k) + v (Z) K(k)

K(k) —/M2 S N,
—Jo 1— k2sin26,

w/2
E(k) = / /1 — k2sin2 0.d6,
0

in which 6; = 0 for an in-plane situation. Particularly, for the in-plane case, the us displacements

(5.33)

are:

2(1—=v)oy b 2 2}

ER)N ™ a2 B

uz(xl,O,:cg) = (534)

The crack mesh consists of 5 bi-quadratic NURBS surfaces for each face, in which the
internal ellipse is scaled by 80% from the total crack size, as shown in fig. 59(b). In addition,
the external boundary mesh has 6 bi-linear NURBS surfaces. For the convergence study, a
knot-insertion strategy is used to increase uniformly in each parametric direction the number of

basis functions only at the crack surfaces.

The convergence analysis in fig. 60 demonstrates again an increase in the order of
convergence rate for the XIGABEM in comparison to the standard formulation. However, for the
most refined mesh, the near-singular integral precision starts to have a mild effect on the solution
accuracy. In addition, fig. 61 shows that the condition number remains similar to the standard

formulation. Moreover, the SIFs directly obtained as degrees of freedom, presented in fig. 62, are
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Figure 59 — (a) Geometry of elliptical crack and (b) Mesh and control points for in-plane
elliptical mesh.
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Source: The author.

Figure 60 — Relative Ly norm of error in displacements for in-plane elliptical crack.
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in accordance with the analytical solutions for the in-plane case. Thus, the enrichment scheme is

also capable of capturing the trigonometrical variation for all three SIFs of this application.

The elliptical crack inclined through angle §; = 7/6 permits an analysis of a complex
crack geometry in a mixed-mode loading case. The extracted SIFs are depicted in fig. 63, in which
again the formulation precisely captures the expected behaviour for all three SIFs. In addition,
table 6 compares the SIFs relative errors with Peng et al. (2017a), when the analytical SIF is

non-nil. The enriched formulation provides lower errors for both cases in all SIFs. Specifically, for
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Figure 61 — Condition number growth for in-plane elliptical crack.
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Figure 62 — Stress Intensity Factor K for in-plane elliptical crack.
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K7 and Ky, an improvement of one order of magnitude is found in the relative error.
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Table 6 — Relative error for SIFs in elliptical crack inclined by 6; = 7/6.

VCCI M-integral
(Peng et al., 2017a) (Peng et al., 2017a) XIGABEM
K 4.65e-02 1.53e-02 5.53e-04
0.=0 | Kyg 4.14e-02 1.28e-02 4.83e-03
Ko - - -
K 8.28e-03 2.21e-02 1.89¢-03
90 = 7T/2 K[[ - - -
Kirr 6.88e-03 5.96e-02 1.77e-03

Source: The author.

Figure 63 — Stress Intensity Factors for elliptical crack inclined by /6 rad.
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Figure 64 — Geometry of prismatic block with edge crack.
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Source: The author.

5.5.3 Prism with edge crack: pure mode analysis

This application consists of a finite prismatic solid with a centred crack of geometry

defined in fig. 64 and of material properties £ = 1.0 and v = 0.0. The boundary conditions

involve the pure mode behaviour, allowing the use of known analytical solutions as appropriate in

order to elicit information about the numerical performance of the XIGABEM formulation. The

upper face (—1.0 < z1 < 1.0, z2 = 1.0, 0.0 < z3 < 2.0), lower face (—1.0 < 27 < 1.0, 29 =

~1.0,

0.0 < z3 < 2.0), front face (1 = 1.0, —1.0 < 25 < 1.0, 0.0 < z3 < 2.0) and back faces (1 = —1.0,
—1.0 < x5 < 1.0, 0.0 < z3 < 2.0,) receive displacement boundary conditions, while all other faces

in the external boundary have prescribed traction. Since the analytical solutions are known for

each opening mode (Williams, 1957), they are directly applied as boundary conditions in the

BIEs, as described in section 2.4. The displacement and stress values for this application are:

uy cos (%’f) (k — cosby)
U 2i ;tr sin (%) (k — cosby)
us : 0
011
022
033
012
013
023
—sin (&) {2 + cos (ﬁ) sin B—Gtﬂ
sin 2(%’5) cos (9—2’5) (2303 (3?)2
. —2vsin (%)
cos (%) {1 — sin (%) sin (32&)}
0
0

vV 27T7”t

K+

% (k + 2+ cosby) 0

co 6—) m—2+cos@t) 0

o o o O

)

SIS

sin 6; sin

cos 0, sin( )—sin@t cos (%
( )—I—cos@tco &

Ky

Kt

(5.35)
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Figure 65 — Mesh for prismatic block with edge crack for (a) XIGABEM analysis and (b)
standard IGABEM approach.

Source: The author.

The numerical analysis via XIGABEM is performed on a NURBS mesh with 9 patches,
in which 7 patches define the external boundary and 2 patches represent the opposing crack
faces. Figure 65(a) presents the extended IGABEM mesh. It should be noted that the lateral
faces do not align with the crack faces, since the Williams-based enrichment functions capture
the discontinuous solution independently of the mesh. The upper and lower crack faces receive
the crack front enrichment, which allows the direct determination of the SIFs. To compare the
convergence rate of the XIGABEM against the standard IGABEM formulation, the numerical
responses for the conventional IGABEM method utilises a mesh containing 15 NURBS patches,
as shown in fig. 65(b). The increased number of patches derives from the need for mesh alignment

at the intersections between the external boundary and the crack on lateral faces.

This application considers each crack opening mode separately so that it is possible to
evaluate the influence of all terms from the enrichment functions. The boundary conditions for
the pure mode M = I, 11,111 utilise eq. (5.35) with Kj; = 1.0 and 0.0 for other K’s. Figure 66
presents the deformed shape for each crack opening mode for both XIGABEM and standard
IGABEM formulations. Discontinuous displacements are evident at the lateral faces in the
IGABEM model, since multiple discontinuously defined NURBS patches represent these faces,
and therefore no continuity between them is imposed. This is naturally circumvented by the
extended IGABEM approach, because it does not require mesh alignment, and this can be seen
in the results with continuity maintained over the face. Further, unlike in the standard IGABEM,
the effect of the tying equations enforces displacement continuity over the crack front in the
enriched XIGABEM scheme.

The convergence analysis shown in fig. 67 presents the error comparison for both XI-
GABEM and IGABEM approaches for each crack mode. For all modes, the standard IGABEM
convergence rate is around 0.6, explained by the square-root nature of the fracture mechanics
solution that is not captured by the NURBS basis functions (neither in the crack faces nor in
the lateral faces). On the other hand, this behaviour is injected into the extended IGABEM

approximation, which results in better convergence for all three modes when compared against
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Figure 66 — Deformed shape for each pure crack loading where standard IGABEM results
are on the left-hand side while the XIGABEM responses are on the right-hand

side.
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Table 7 — Average values for SIFs in each pure mode loading case of prism with edge crack.

Degrees of freedom avg. |K;| avg. |Krr| avg. |Kpg|
639 1.00057  5.84e-07 2.66e-06
Mode I 1275 0.99979  9.66e-06 2.95e-05
2175 0.99991 9.17e-06 1.96e-05
639 7.06e-07 1.00125 1.70e-02
Mode 11 1275 7.55e-05 1.00050 2.21e-03
2175 8.36e-07 1.00032 1.39e-04
639 7.19e-07  7.06e-04 0.99579
Mode III 1275 1.51e-03  7.92e-04 1.00228
2175 6.81e-06  2.74e-04 0.99991

Source: The author.

the standard formulation. It is evident from fig. 67 that different convergence rates are found for
the different modes. It is noticeable that some caution is needed in interpreting convergence rates
for XIGABEM, since the important square root behaviour is included in the coarsest models,
but not improved in later refinements which add only the smooth NURBS basis functions. In
addition, fig. 68 presents the comparison of the condition number of the A matrix for both
XIGABEM and IGABEM approaches. For each approach, the condition number is the same
for all modes, since a change in the boundary conditions only affects the right-hand side vector.
Through this analysis, it can be seen that the enrichment strategies cause a consequent increase
in the condition number. Nevertheless, the degree of ill-conditioning for the XIGABEM in this

application is mild and does not jeopardise the accuracy of the system solution.

The SIF results obtained directly from the XIGABEM solution vector x are presented in
table 7. The SIF presentation considers the average value for the absolute SIFs along the crack
front for all crack opening modes. All STFs match closely with the expected value for each pure
mode loading, and the errors reduce with mesh refinement. For all cases, the most refined mesh
provides the associated SIF for its pure mode loading with errors below 4.10~%. This provides
evidence that the proposed formulation is capable of delivering SIFs to high accuracy without

the requirement for post-processing tasks, as J-Integral.
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Figure 67 — Relative Ly norm of error in displacements for prismatic block with edge crack.
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Figure 68 — Condition number growth for prismatic block with edge crack.
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5.5.4 Prism with edge crack: uniform load

The fourth application of the XIGABEM formulation with the Williams solution as
enrichment function deals with the numerical analysis of a finite prismatic block under uniform
traction o9 = 1.0 at its ends. Figure 69 presents its geometry and boundary conditions, in which
the displacements in the highlighted region are responsible for preventing rigid body motion. The
material properties are: Young modulus £ = 1000.0 and Poisson ratio v = 0.3. This application
does not have an analytical response, which requires its comparison against reference solutions
obtained by other authors using different numerical methods. Also, it is reasonable to expect
plane-strain behaviour at the middle of the crack front z = 3.75, at which the correspondent Ky
is (Tada; Paris; Irwin, 2000):

K] = O‘g\/ﬁF(a/b)

a a2 a\3 a\4 (5.36)
F(a/b) = 1.122 — 0.231 <b> +10.550 (b) —21.710 <b> +30.382 (b)

Figure 69 — Geometry and boundary conditions for prismatic specimen under uniform
traction.
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Initially, the crack surfaces are given only the SIF enrichment, and the corresponding
mesh presented in fig. 70(a) consists of 17 NURBS surfaces, of degree p = ¢ = 1 for the external
boundary and p = ¢ = 2 for the crack surfaces. In this mesh, all surfaces must align with
the crack, which places additional demands on the CAD model to satisfy this requirement.
Additionally, the fully enriched analysis considers the SIF enrichment on the crack faces, the
Williams-based enrichment on the lateral faces and the Heaviside enrichment on the fully cut face,
which reduces the amount of NURBS surfaces to 10, as depicted in fig. 70(b). Again, the NURBS
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basis functions are of degree p = ¢ = 1 on the external boundary faces and p = ¢ = 2 on the crack
faces. In this application there is a plane-stress/plane-strain transition at the crack front close to
the lateral faces. In order to study this behaviour, and therefore the influence of the Kolosov
constant on the results, for the fully enriched model two different analyses consider the Kolosov
constant prescribed for plane-stress and plane-strain scenarios. Therefore, three different models
are compared against reference solutions using IGABEM by Cordeiro and Leonel (2018) and
Lagrangian BEM by Mi and Aliabadi (1992), and against the 2-D plane-strain solution eq. (5.36).
It is relevant to mention that the 2-D equivalent solution for this problem does not hold for the
entire crack front. However, the aforementioned references have shown that it becomes a suitable

comparison close to the crack front centre, where the plane-strain behaviour is more prominent.

Figure 70 — Isogeometric mesh for prismatic block under uniform traction, in which (a)
XIGABEM mesh with only the SIF enrichment, and (b) fully enriched model.

Source: The author.

The number of degrees of freedom for each analysis are 3,996 and 2,787 for the model
with only SIF enrichment and for the fully enriched model, respectively. In addition, the models
of Cordeiro and Leonel (2018) comprise 3,273 and 5,121 degrees of freedom for two different
refinement levels, while Mi and Aliabadi (1992) do not provide their model sizes. The normalised
K7 comparison in fig. 71 demonstrates that the crack front enrichment is capable of directly
determining the SIF for all scenarios in broad agreement with other results in the literature. At
the crack front coordinate z = 3.75, the XIGABEM model with only crack front enrichment
has a relative difference in K; of 2.0% in comparison to the 2-D plane-strain solution, while
the fully enriched models give rise to discrepancies of 0.52% and 0.96% when using plane-strain
and plane-stress Kolosov constants at the Williams-based enrichment, respectively. Therefore, it
is noticeable that capturing the square-root behaviour over the lateral faces improves the SIF
determination. On the other hand, it is interesting that the Kolosov parameter being considered
as plane-stress on lateral faces forces the overall K; variation to be lower than the plane-strain
case. Still, both situations lead to an accurate result in comparison to other numerical methods
and the handbook two-dimensional solution. Moreover, the fully enriched models deliver higher
accuracy than the standard IGABEM model with 3,273 degrees of freedom, whose difference
was 1.93%. It must be noticed that the present study and Cordeiro and Leonel (2018) utilised
v = 0.3 while Mi and Aliabadi (1992) used v = % The numerical analysis of this application
with XIGABEM has obtained up to only 0.5% difference in SIF at the centre of the crack. In
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Figure 71 — Stress Intensity Factors along crack front, in which XIGABEM (a) is the
model with only the crack front enrichment, XIGABEM (b) and (c) are the
fully enriched models with Kosolov constant set as plane strain and plane
stress, respectively.
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summary, it is possible to obtain higher accuracy from coarser models, providing evidence of a

gain in solution accuracy available using the extended IGABEM approach.
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5.6 Partial conclusions

In this chapter, the Williams solution-based enrichment scheme allows the representation
of the asymptotic behaviour of displacements near the crack front. Two different approaches
consider the Williams solution: one on boundary faces partially cut by the crack, and another
over the crack surfaces themselves. For the boundary faces, besides incorporating a behaviour
that was not captured by the standard NURBS functions, this strategy precludes the need
for a re-meshing task on this face. In addition, the Williams-based enrichment for crack faces
introduces the Stress Intensity Factors directly as system unknowns, obtained in the solution
vector, which removes a post-processing task for their determination. For the SIF enrichment, a
tying constraint equation is responsible for obtaining the supplementary equations to recover a
square algebraic system. As a consequence of the enrichment strategy, additional singular kernels
arise, in which their correct treatment requires the derivatives of the enrichment functions for
its use in the SST. Additionally, the correct representation of the local coordinate system of
the crack front and its derivatives involves the Frenet-Serret frame, which is a suitable strategy
for parametric curves. Numerical results have demonstrated the superior performance of the
XIGABEM in comparison to both IGABEM and BEM, by analysing both planar and inclined

cracks with different shapes, as well as a prismatic block with an edge crack.
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6 FATIGUE CRACK GROWTH MODELLING WITH THE XIGABEM

Fatigue crack growth analysis with the LEFM is suitable for high-cycle loading scenarios.
In this situation, the load amplitude is small enough not to cause material inelastic behaviour
for a small amount of loading cycles, but it causes degradation through crack growth throughout
the component life cycle. For LEFM to be admissible, it is assumed that the inelastic process
zone ahead of the crack is negligible in size in comparison to the crack length and to the solid
dimensions. The life prediction analysis then relies on empirical laws that relate the crack growth
rate to the variation of the stress intensity factors over the load cycle. Because of its simplicity,
the Paris-Erdogan Law is commonly applied for this type of problem, and is adopted in this study.
It is noted that other crack growth laws may be applied if desired. In this context, the XIGABEM
formulation presented in chapter 5 emerges as a suitable approach for fatigue crack growth
analysis with the Paris-Erdogan Law. This law requires the SIFs for life cycle analysis, and these
parameters are directly obtained from the Williams-based enrichment scheme. Consequently,
crack growth analysis takes place immediately after solving the mechanical problem via IGABEM,

without the need for any intermediate step to determine the SIFs.

This chapter initially presents the Paris-Erdogan Law and its application to predict the
fatigue life of a cracked component under low-cycle repetitive load. Next, two crack growth
criteria are presented: the hoop-stress (Erdogan; Sih, 1963) and Schollmann (Schéllmann et al.,
2002) criteria. Subsequently, this chapter details all modifications required within the XIGABEM
framework to account for the crack propagation phenomenon. Finally, three numerical applications

compare the responses from XIGABEM against reference solutions from the literature.

6.1 The Paris-Erdogan Law and fatigue life prediction

The Paris-Erdogan Law relates empirically the crack growth rate da/dN and the SIF

range AK as:

da m
N C(AK) (6.1)

in which C and m are material parameters for fatigue crack growth, whose determination relies
on experimental studies. In a fully three-dimensional case, AK accounts for the equivalent SIF
during a load cycle, which is a combination of the SIF of each mode. The crack growth criterion
choice defines the equivalent SIF AK,,. This study compares the use of two criteria: the hoop
stress criterion (Erdogan; Sih, 1963) and the Schollmann criterion (Schéllmann et al., 2002). The
expressions for both the AK,, and the propagation angle are present in section 6.2. It is worth
mentioning that the power m in the SIF amplitude AK can significantly amplify the errors in
the life cycle prediction when SIFs are not properly assessed. This requires high accuracy in the
SIF determination, which is an advantage of the XIGABEM formulation developed in this thesis.

The classical approach for determining the required amount of cycles for the crack to

grow from a length a to a length a + Aa uses a constant approximation for the equivalent SIF
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variation so that AK.; = Keq(a + Aa) — Keq(a), which goes directly on eq. (6.1). Alternatively,
this study uses the linear SIF approximation for the development of the eq. (6.1), firstly proposed
by Andrade and Leonel (2019). The study of Cordeiro and Leonel (2019) applied this strategy for
the three-dimensional BEM in a mixed-mode crack growth analysis, in which results have shown
its advantages over the classical approach. In this context, the approximation of the equivalent
SIF between the crack lengths a and a + Aa is:

AKey = PBa+7y (6.2)
in which § and ~ are constants of the linear form as:

5= AKcq(a+ Aa) — AKq(a)
Aa (6.3)
Y= AKeq(a) — Pa

The substitution of the eq. (6.2) in the Paris-Erdogan Law, eq. (6.1), and its integration

result in: J
a
RPN T
a+Aa 1
1 a+Aa
AN =2 / (Ba+~)"™da = (6.4)
L i
AN=5 <1_m>/31 =
A Ael[AK(o+ Aa)T — [AR (0]}

C(1—m)[AKeg(a+ Aa) — AKey(a)]
in which AN stands for the increment in the number of cycles in the crack advancement from a
to a + Aa. Cordeiro and Leonel (2019) have shown that this alternative formulation allows for
the use of higher crack growth steps Aa in comparison to the classical approach. This enables a

reduction in the computational cost by reducing the mesh density in crack growth analysis .

Finally, the total number of cycles of loading and unloading becomes the sum of each
AN of all propagation steps of the analysis. In a computational assessment of the life cycle,
the maximum increment Aapax occurs at the crack front location with maximum AK eq - The
advancement for each point x; at the crack front considers a weighting factor based on the
Paris-Erdogan Law in a discrete manner as:

Aa(x;) = Aamax (W) (6.5)
eq

in which AKZ* is the maximum AKe,(x;) at the crack front for the current propagation step.
6.2 Crack growth criteria

The crack growth criterion is responsible for defining the crack propagation angle 0,

associated with the local coordinate system at the crack front to define the new crack front
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location. Several studies have proposed techniques to define the proper crack path considering
the mechanical response, the type of loading and the thermodynamics of the fracture process. For
the LEFM in particular, either a global or local energy balance may be capable of describing this
phenomenon. Both techniques rely on the SIFs to represent the stress state at the crack front,
which in this work are directly defined with the solution of the boundary value problem for each
crack increment. In this study, the choice of the maximum hoop stress criterion (Erdogan; Sih,
1963) stems from its use in previous studies of three-dimensional IGABEM crack propagation
(Peng et al., 2017a; Sun; Dong, 2021; Sun; Dong, 2023). However, since the maximum hoop
stress criterion does not consider the Mode III in the crack propagation angle, the Schollmann
criterion (Schollmann et al., 2002) incorporates its effects on the crack growth process. This
study presents a fully three-dimensional criterion that allows for the correct computing of the
crack front angle. The brittle failure of the material occurs when K.y > K, in which Ky is the
material toughness for both criteria. It is noteworthy that the fatigue crack growth only occurs if

Keqy > K, in which Kpyy, is the threshold for the fatigue phenomenon.

6.2.1 Maximum hoop stress criterion

The maximum hoop stress criterion seeks the direction in which the hoop stress is

maximised for a given loading scenario. This occurs for an angle ), so that:

—2(K11/K7)
1+ \/1+8(K[[/K[)2

(6.6)

0, = 2arctan [

and the equivalent SIF K., that incorporates the mode III effects according to Gerstle (1986) is:

Koy =K} + K3 + (1 +0)K}, (6.7)

While the K., contains the influence of mode III through Ky, the crack propagation
angle does not take this mode into account. Thus, mixed-mode fracture problems having a

non-zero mode III component may not be properly represented by this criterion.

6.2.2 Schollmann criterion

The Schollmann criterion (Schoéllmann et al., 2002) defines the propagation angle such
that it maximises the principal stress 0/1 in the local coordinate system defined on the crack

front. The principal stress value is:

9o tom V(09 + 0z3)? + 4(79z3)?

=" 5 (6.8)

in which all stress variables are written according to a local coordinate system at the crack front,
as shown in fig. 72. By assuming that the component oz3 does not affect the propagation angle,

the Schollmann criterion takes oz3 = 0. Then, the equivalent SIF is:
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Figure 72 — Local coordinate system for the crack front stresses.

Source: The author.

1 ) ) 3 .
Koy = 5 cos <2p> {KI cos? <2p> - §KH (sinf,)

9 3 2 (6.9)
+ [KI cos? <2p> - §KH (sin Gp)] +4K?%;,
and the equation for the propagation angle 0, is:
1 _KIS S 1 ~ a = —K[S _
= - K ~12|(K;Cy — K - K K
0= A= { T -kt + g [2 (i€ - 08) - k] |2 — k]
1
_ _12 0 —_
—16K7 sin (ep)} HKICQ - KIIS] + 64K7%; cos? <2pﬂ 28—
(6.10)

= 3 (0 9 30,
Cl—2cos<2)+2cos(2>
02:3008<92p>+cos<3§p>
& o (O . (30,

S—Ssm<2)+3sm<2>

There is no analytical solution for the eq. (6.10), but 6, may be determined numerically.
This study applies the Golden Section algorithm to determine the propagation angle. In addition,

the Schollmann criterion defines the twist angle v, as:

= 1 arctan 2723 (0p)
Uy = garct [oewp) - axswp)] (6.11)

The twist angle influence on the XFEM (Pereira; Duarte; Jiao, 2010) and in the BEM
(Cordeiro; Leonel, 2019) relies on a crack front equivalent element. Both studies considered a
linear approximation for this element, while in this study NURBS curves represent the crack
front. There is therefore no natural equivalence for these strategies. In this study a zero twisting
angle is assumed for simplicity; its influence on the crack front propagation within XIGABEM is

suggested as a possible avenue for future work.
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Figure 73 — Definition of new crack position based on points and the corresponding new
crack front.
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6.3 Crack propagation framework in XIGABEM

In a crack growth framework within the XIGABEM, the definition of the propagation
angle and the increment for the crack front takes place considering the solution of the boundary
value problem for the previous geometry. Then, in a numerical framework, a new set of points
defining the crack front are the starting point to determine a parametric curve that best represent
them. Previous studies (Peng et al., 2017a; Sun; Dong, 2021) for the crack growth in IGABEM
applied a crack front updating algorithm proposed by LaGreca, Daniel and Bac (2004). This
framework involves the movement of the existing control points that defined the previous crack
front so that they best fit the new crack front points. However, this strategy does not allow the
NURBS weights to be adjusted during the crack growth procedure, which leads to a sub-optimal
representation of the crack front during its advance. In the current work, a least-squares fitting
defines the new crack front based on an isogeometric representation with NURBS curves, as in
Carlson (2009).

The new procedure for the crack front updating using the IGABEM considers initially
that the previous knot span and degree of the NURBS crack front remains the same for the
new crack front. The sample points C’;j define the coordinate in the k direction of the updated
front, and these come from a point-wise propagation of a uniformly spaced set of points whose
parametric coordinate are t;'» on the NURBS curve ¢ that defined the growing crack front. The
algorithm considers a crack propagation for multiple crack surfaces simultaneously. Figure 73

illustrates this sampling procedure and the definition of the new point based on Aa and 0,.

The least-squares fitting algorithm proceeds by writing a minimisation problem for the

squared distance of the sampled point é’g :

min F = f7'f

o (6.12)
fo= Cp(th, PLw') — CY
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in which P? and w’ are the control points and weights of the optimised NURBS curve, while ¢ is
a global connectivity index related to the indices ¢, j, and k. These two sets of variables are the
output of this analysis. By applying the Gauss-Newton method and its truncation in the first
term, the eq. (6.12) becomes:

JTIAx = -3t (6.13)

in which the vector Ax = {AP Aw}’ stores the increments in each of the optimising variables

(control points and weights), and the Jacobian J is:

J=[Jp 3, (6.14)

corresponding to the first derivative of the vector f with respect to P? and w?, for Jp and J,,

respectively. Their expressions are present in Carlson (2009), which involves the intermediate

matrix Bpi:
Of
_ | oP?
Bpi . af, (6.15)
oP?
in which the partial derivative with respect to the control point is:
Of
2P — i (6.16)

in which ¢; is the corresponding basis function of the control point P’. The Jacobian Jp is:

Bpi(t1)  Bpe2(t1) -+ Bpn(t)
e R 61
Bp1 (tm) Bp2 (tm) -+ Bpn (tm)

in which m denotes the total of sampled points in the NURBS curve, and n is the total of control
points of this curve. The Jacobian matrix J,, involves the partial derivative with respect to the

weights, being;:

Ofe(tr)  Ofe(tr) fult1)
811)1 awg 8wn
Ofta)  Ofulta) fult2)
J, = owy Ows ow,
s N (6.18)
Ofe(tm) Ofe(tm)  foltm)
owy Ows owy,
Ofe _ (Xiy Nowi) NiPy — Ni (37 Niwi Py)
Ow; (S Niw;)?

It is worth mentioning that the first and the last control points of each NURBS curve are
fixed based on the propagation angle and crack increment of the end points. When a NURBS

curve endpoint shares its position with an endpoint of another NURBS curve, their corresponding
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Figure 74 — Averaging endpoints to guarantee C° continuity between NURBS surfaces.
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control point is taken as the average of the resulting point from the propagation of each patch
separately, as shown in fig. 74. This guarantees a C° continuity when multiple NURBS surfaces,

and therefore multiple NURBS curves, describe a single crack front.

After finding the set of control points and weights that best approximates the new crack
front, the enrichment nature requires also tangential and normal alignments between the junctions
of each NURBS curve. For problems with multi-patch NURBS surfaces representing the crack
surface, the optimisation for the crack growth update does not guarantee continuity for the local
coordinate system at these points. This is an issue because this continuity is a requirement for
the set of the enrichment functions herein applied. To circumvent it, a gradient descent algorithm
promotes the alignment between the tangents and the normal outward vectors at each endpoint.
The tangent vector at the end points is aligned with the vector between the first and second
control points, for the initial point, or between the penultimate and last control points, for the

final point, as illustrated in fig. 75.

Following the definition of fig. 75, let A = P4 — P¢ be the vector between the endpoint
P¢ and the point P4 from the NURBS curve ¢,,, while B = PP — P¢ is the vector from P¢ to
the P? on the neighbouring NURBS curve ¢,,. The tangent alignment comes from a collinearity

condition as:

||A|| i (6:19)

in which both A and B are functions only of the second/penultimate control points of the curves

¢m and ¢,. The gradient descent strategy updates the control points P4 and P as:
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Figure 75 — Control points position for each updated crack front for tangent alignment.
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pA k+1 pa k 891A
B =\ pz [ OGP 391 (6.20)

oPB

in which the partial derivatives are:

(A.B)(P — F{)||B]|

sign(A.B)B||Al[|| BI| - =
g1 _ 1Al
oPA AlBIN2
i ( |||r(|p§)(PB o (6.21)
sign(A.B) Al All|| B|| - ==
o _ 1B
oPf (1AlHIBID?

In the incremental procedure, the stopping criterion is based on the scalar g associated
with the tangent alignment condition. agp is a parameter set in the beginning of the analysis
that considers the influence of the gradient during the iterative process. The alignment conditions
are applied sequentially, in which firstly the tangent alignment occurs, and its result is the input
data for the normal alignment. The normal outward alignment condition stems from using the

inner product of the normal outward vector from each neighbouring NURBS curve as:

g2 =1—|N™.N" =0 (6.22)

in which N™ and N™ are the normal vectors at the shared point of the curves ¢,, and ¢,. The
gradient descent method for the outward normal vectors occurs in a similar fashion as eq. (6.20),

but updating all control points of each NURBS curve

.- k1 o k dga "
_ _ opP™
{ o } _{ . } aGgp al;z (6.23)
opPn

and the partial derivatives associated with the normal outward alignment are:
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Figure 76 — New crack surface generation based on new crack front.
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in which a finite difference strategy computes the partial derivatives of the normal outward vector

due to their complex analytical determination.

6.4 Modifications in the XIGABEM algebraic system

The fatigue crack propagation analysis with XIGABEM requires an incremental sim-
ulation, in which for each propagation step a new set of isogeometric surfaces represents the
updated crack front. The generation of these new crack surfaces relies on the connection between
the previous and the updated crack front as illustrated in fig. 76. The perpendicular direction
receives the same knot vector as the previous surface. The new control points of this surface are

found from a direct interpolation between the control points of the previous and new fronts.

The Greville Abscissae strategy generates the collocation points on the new surfaces, and
application of the relevant boundary integral equations at these points requires integration over
all the existing domain. In addition, the integration over the new portion of the boundary, formed
by the latest crack surface increment(s), is also required for the pre-existing collocation points.
In this stage, additional rows and columns arise in the algebraic system, the rows referring to
the new collocation points and the columns to the displacement and traction coeflicients for the
new surfaces. It is important to recall that the remainder of the algebraic system is unaffected

by the introduction of new crack surface elements.

After the definition of the new crack front, the determination of the enrichment terms

occurs simultaneously to the integration of the corresponding new surfaces. With the definition
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of the new crack front, all enrichment terms from the previous step are removed from the system,

and previously enriched elements return to the standard (unenriched) IGABEM description.

When the crack intersects the external boundary, its growth also affects these faces. This
study applies only the Heaviside enrichment to these faces for simplicity, while future work
may consider applying the Williams-based solution. In this case, enriched basis functions with
unchanged support remain unaltered, ensuring that their influence on the algebraic system is
preserved from the previous propagation step to the next. This yields a computational gain by
removing the need for recomputing the influence of this enrichment. In addition, the crack growth
modifies the support of some enriched basis functions, and their corresponding contribution is
removed and recomputed. Another possibility is the need to enrich basis functions that were
not previously enriched, whose contributions will be computed during the integration from new
collocation points and the existing boundary. The strategy for supplementary equations in this
case is the minimisation of the Ly error between the displacements at the crack edge and those

at the intersected face.

6.5 Numerical applications

This section presents four numerical applications of the XIGABEM formulation for
fatigue crack growth simulation. The first application considers an elliptical crack in a prism,
where the loading conditions induce a pure mode I growth. Its elliptical shape becomes circular
during crack propagation. The second application addresses an inclined penny-shaped crack
under traction fatigue load, leading to a mixed-mode 1/1I/III propagation. The third application
is a prism with an edge crack that evaluates the algorithm’s ability to represent crack growth as
the crack intersects the external boundary. The fourth application comprises a numerical analysis
of a hook under cyclic loading, in which the isogeometric formulation deals with a complex
geometry for both the external boundary and the initial crack, as well as with its change of

curvature during the crack growth propagation.

6.5.1 Elliptical crack growth

The first application of the fatigue crack growth analysis with the XIGABEM involves
the fatigue analysis of an elliptical shaped crack immersed in a prismatic solid. The geometry
and boundary conditions are presented in fig. 77, in which the crack centre is at the coordinates
(0,0,0). A uniformly distributed traction varying from of® = O0MPa to o5®* = 200MPa is
applied on the upper face, while the lower face is clamped. The material is a Ti-6A1-4V alloy,
whose properties are given in table 8. The Paris constants provided assume units of AK and
da/dN to be MPa mm®® and mm/cycle. The numerical modelling of the elliptical crack considers
5 bi-quadratic (p = ¢ = 2) NURBS surfaces modelling each crack surface, as in fig. 78, i.e. 10
NURBS surfaces are used for both crack sides. The inner elliptical surface has dimensions
equivalent to 80% of the elliptical crack. The complex K variation along the crack front affects
the crack propagation increment by triggering eq. (6.5). This application has been studied by

Ilie and Ince (2022), in which a finite element analysis obtained results that approximate well



137

their proposed reference solution for the crack front advancement. The fatigue analysis stops

after 10 increments, with a maximum increment of Aamax = 0.6mm.

Figure 77 — Geometry and boundary conditions of elliptical crack immersed in prismatic
solid.
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Table 8 — Material and fatigue properties of Ti-6A1-4V alloy.

Young Modulus FE = 115GPa
Poisson’s ratio v =10.3

Paris constant C =1.77.10'4
Paris exponent m = 3.667

Source: The author.

Three isogeometric meshes are used to test the performance of the proposed XIGABEM
algorithm for the propagation of the elliptical crack under the given cyclical load. The coarse
mesh, namely mesh 1 and shown in fig. 78, has its control points, weights and knot vectors
given in the Appendix B. The uniform knot insertion refinement in both directions of mesh 1
generates the finer meshes 2 and 3. Meshes 1, 2 and 3 have 114, 184 and 274 collocation points,
respectively, for the initial crack. The Schollmann criterion is adopted for the determination
of the crack propagation angle; however, since the in-plane elliptical crack has a pure mode I
response, there is no significant difference between the two criteria used in this study. In addition,
table 9 presents the number of degrees of freedom in each propagation step, which highlights the
XIGABEM ability of representing a curved problem with a small number of degrees of freedom.

The crack configuration for Mesh 2, in the first step, the fifth step and the last step, are
shown in fig. 79. In addition, fig. 80 presents the deformed shape amplified by a factor of 1000
for each mesh in their last propagation step. As expected for this geometry during crack growth,
the crack geometry transforms from its initial elliptical shape into a circular shape. Additionally,

the XIGABEM formulation promotes the tying between the upper and lower crack faces, and
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Figure 78 — Isogeometric mesh and control points for elliptical crack.

Source: The author.

Table 9 — Number of degrees of freedom at each propagation step.

Number of degrees of freedom
step | Mesh 1 | Mesh 2 Mesh 3
0 378 600 882
1 594 888 1362
2 810 1176 1842
3 1026 1464 2322
4 1242 1752 2802
5 1458 2040 3282
6 1674 2328 3762
7 1890 2616 4242
8 2106 2904 4722
9 2322 3192 5202
10 2538 3480 5682

Source: The author.

this reduces the error in this region. Also, all three meshes give rise to a similar displacement
field, which demonstrates the ability of the XIGABEM formulation to capture the response well
even using coarse meshes. Moreover, the fatigue life cycle assessment for the elliptical crack in
fig. 81 demonstrates a convergence pattern for the required amount of cycles, and this response

agrees with the reference solution of Ilie and Ince (2022).



139

Figure 79 — Elliptical crack growth: steps 1, 5 and 10.

Step 1 Step 5 Step 10
Source: The author.

Figure 80 — Deformed shape for each mesh in tenth propagation step.

Mesh 1 Mesh 2 Mesh 3

Displacement x2
0.0718 0.0800 0.0850 0.0900 0.0950 0.0989
| |

Source: The author.

Figure 81 — Fatigue life assessment of elliptical crack in in prismatic solid.
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6.5.2 Inclined penny-shaped crack growth

The second numerical application of the XIGABEM formulation for the fatigue crack
growth assessment consists of an inclined penny-shaped crack as shown in fig. 82. The crack has
radius R = 0.1m, is located centrally in a cube of side ¢ = 2.0m, and is inclined by an angle
7/4 rad. The isogeometric mesh for the crack geometry contains 5 NURBS surfaces of degree
p = q = 2 for each crack surface, i.e. a total of 10 NURBS surfaces is used for the crack. The
central portion of the crack is circular with a radius R;,; = 0.08m while the annular outer portion
of the crack is modelled using 4 NURBS surfaces, as shown in fig. 83. For the numerical analysis,
this geometrical mesh undergoes two knot insertions in each parametric direction, which results
in a total of 274 collocation points. In the face in which x; = —1.0, the prescribed displacement
is u1 = 0.0, while lower face xo = —1.0 has us = 0.0 and the face with z3 = —1.0 contains
ug = 0.0 as an enforced displacement. The upper face xo = 1.0 is subjected to a load varying
cyclically between o™ = 0MPa and o3 = 1MPa. Continuity between each crack surface is
not naturally enforced in a multi-patch discretisation, which justifies the local adjustment for
tangent and normal outward vectors. The loading condition results in a fully mixed mode I/II/IIT
response due to the crack inclination. Pereira, Duarte and Jiao (2010) analysed this geometry
with the hp-generalised FEM approach, in which the Schollmann criterion defined the crack
growth direction for the crack. The material and fatigue properties are presented in table 10,
in which the Paris constants assumed the units used for AK and da/dN to be MPa mm%° and
mm/cycle. The fatigue analysis terminates after 20 propagation steps. The proportion between
the initial crack and the final crack configuration from the results obtained by Pereira, Duarte
and Jiao (2010) indicates that those authors applied a Aamax of 0.1m rather than the value of
0.002m stated in their description. Our parameters adopted in this study are tuned to allow
a direct comparison of the end state of the crack against the Pereira, Duarte and Jiao (2010)
results. The hoop stress criterion and the Schollmann criterion are both tested for defining the
crack evolution. In addition, these two criteria are compared using Kjy; in their equations (as
expected) and taking K77 = 0 for the crack propagation angle and equivalent SIF, in an attempt
to compare with Pereira, Duarte and Jiao (2010). This application has a reference solution (Tada;
Paris; Irwin, 2000) for the LEFM case, according to eq. (5.32).

Table 10 — Material and fatigue properties of inclined penny-shaped crack.

Young Modulus E = 1000MPa
Poisson’s ratio vr=20.3

Paris constant C =1.5463.10~11
Paris exponent m=2.1

Maximum increment Aapax = 0.0185m

Source: The author.

The crack configurations for the initial geometry, and for the seventh, fourteenth and
twentieth steps are presented in fig. 84, considering both hoop stress and Schollmann criteria
and the presence or absence of Kjjr in the propagation analysis. Figure 85 shows the final crack

configuration reproduced from Pereira, Duarte and Jiao (2010). Both geometries are similar
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Figure 82 — Geometry and boundary conditions of inclined penny-shaped crack.
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Figure 83 — Isogeometric mesh and control points position for inclined penny-shaped crack.

Source: The author.

when comparing all four scenarios obtained by XIGABEM with the reference response with the
Schollmann criterion. As expected, the crack grows in a manner leading towards a pure mode I
configuration with Schollmann criterion, as also found in the reference solution. However, the hoop
stress criterion with and without K7 influence and the Schollmann criterion without Kj;; also
lead to a similar crack configuration to that predicted using the Schollmann criterion considering
Ky effects. This suggests that the choice between these two criteria for this application does not
significantly alter the final response. This contrasts with Pereira, Duarte and Jiao (2010), who
found their crack configuration when Krr; = 0 not to reach a fully in-plane, circular geometry at
the end of the analysis; the XIGABEM response is similar for all four different scenarios in the
present study. In addition, the number of degrees of freedom at the last propagation step for
the XIGABEM response is 8082, demonstrating the ability of XIGABEM to obtain accurate

solutions for cracked problems with a small number of degrees of freedom.

The SIF comparison between the results obtained by the XIGABEM and the solution
from Pereira, Duarte and Jiao (2010) for the final propagation step and using the Schollmann
criterion is shown in fig. 86. In addition, the average value for K7 and the coefficient of variation

(standard deviation divided by the mean value) for each case and the Pereira, Duarte and Jiao
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Figure 84 — Inclined penny-shaped crack configuration during fatigue growth by XIGA-
BEM considering (a) Hoop stress criterion, (b) Schollmann criterion, (c¢) Hoop
stress criterion with K;;; = 0, and (d) Schollmann criterion with Kj;; = 0.

step 7 step 14 step 20
(a) Hoop stress criterion

step 7 step 14 step 20
(b) Schollmann criterion

step 7 step 14 step 20
(c) Hoop stress criterion with K7y =0 in K,

step 7 step 14 step 20
(d) Schollmann criterion with K;;; =0 in 6,

Source: The author.

Table 11 — Average values for K in the last propagation step for Hoop stress criterion
and for Schollmann criterion.

avg. K; | Coefficient of
(MPay/m) | Variation
Pereira, Duarte and Jiao (2010) 0.7316 0.40%
Hoop stress criterion 0.7511 0.84%
Schollmann criterion 0.7541 0.66%
Hoop stress criterion Ky = 0 in K 0.7505 0.41%
Schollmann criterion K = 0 in 6. 0.7491 0.38%

Source: The author.

(2010) solution in its last propagation step are presented in table 11. The discrepancy between
the results and the reference solution may be associated to the absence of the crack front torsion
angle in the definition of the new crack front in comparison to the hp-GFEM approach. Still, both
strategies result in approximately constant K7 along the crack front, which is further evidence
that the crack has evolved to a circular shape in a plane perpendicular to the applied load. In

addition, the Ky and K values have reduced to negligible values by the last propagation step.
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Figure 85 — Inclined penny-shaped crack configuration from the hp-GFEM approach
(Pereira; Duarte; Jiao, 2010), considering (a) Schollmann criterion and (b)
Schollmann criterion with K77 = 0.

(a) Schollmann criterion - hp-GFEM

(b) Schollmann criterion with K;;; = 0 - hp-GFEM

Source: The author.

Figure 86 — SIF distribution along crack front at the last propagation step: Schollmann
criterion and comparison against hp-GFEM results from Pereira, Duarte and
Jiao (2010).
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Figure 87 — SIF distribution along crack front at the last propagation step: Schollmann
criterion considering K;;; = 0 for propagation angle and comparison against
hp-GFEM results from Pereira, Duarte and Jiao (2010).
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Figure 87 compares the SIFs between the XIGABEM approach and the hp-GFEM
approach (Pereira; Duarte; Jiao, 2010) with the Schollmann criterion using K;;;r = 0 during
propagation, and for the last propagation step. The most important result for this problem,
i.e. Ky, is largely unaffected by taking Kj;r = 0. The XIGABEM results for K7y and Kjjr are
also very similar to the case in which Kj;; is not taken to be zero for the calculation of the
propagation angle. Accordingly, the XIGABEM formulation was capable of achieving a pure
mode I response, while the oscillation in the hp-GFEM results of Pereira, Duarte and Jiao (2010)
is consistent with the final geometry of the crack not having reached a plane perpendicular to the
applied load. Also, fig. 88 presents the SIFs for the last step using the hoop stress criterion, with
Ky and without Ky effects on the equivalent SIF, respectively. Similarly, in these two cases,
the SIF distribution matches that found with the Schollmann criterion (both with and without
Ky effects on the propagation angle), which indicates that for the XIGABEM formulation the

adoption of either of these two criteria will lead to similar responses.

Figure 89, fig. 90 and fig. 91 present the evolution of each SIF during propagation using
the hoop stress criterion, while fig. 92, fig. 93 and fig. 94 correspond to the SIF evolution using
the Schollmann criterion. Additionally, these graphs present the SIF variation of the initial
configuration (step 0) along the crack front and its comparison with the reference solution given
by eq. (5.32). Based on the comparison for the initial geometry, the XIGABEM response agrees
with the reference response, as also previously found in section 5.5.1 for a crack with different
dimensions. In addition, the SIF evolution is of great interest for the scientific community as
it provides benchmark responses. Based on their evolution, it is evident that the pure mode I

behaviour, in which the crack has evolved to lie in a plane perpendicular to the applied load, has
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Figure 88 — SIF distribution along crack front at the last propagation step with the hoop
stress criterion and the influence of K;;; in the equivalent SIF.
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developed by step 14, since K5 and Kjj; have reduced to values close to zero in this step; they
do not reduce further from step 14 to step 20. The crack configuration in fig. 84 justifies this

claim, due to the planar circular shape the crack assumes in the step 14.

Furthermore, fig. 95 presents the required number of cycles for the crack growth for all
four analysed cases. For the initial steps, there is a noticeable difference in the required number
of cycles for a given increment for each criterion. This effect tends to reduce throughout the
analysis, while the crack pursues a pure mode I response. At the final stages, all four analysis
strategies predict similar numbers of cycles, which is consistent with the similarity in the SIF

distribution during crack propagation.
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Figure 89 — K distribution along crack front at steps 0, 7 and 14 for hoop stress criterion.
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Figure 90 — K/ distribution along crack front at steps 0, 7 and 14 for hoop stress criterion.
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Figure 91 — K distribution along crack front at steps 0, 7 and 14 for hoop stress criterion.
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Figure 92 — K distribution along crack front at steps 0, 7 and 14 for Schollmann criterion.
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Figure 93 — K distribution along crack front at steps 0, 7 and 14 for Schollmann criterion.
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Figure 94 — Ky distribution along crack front at steps 0, 7 and 14 for Schollmann criterion.
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Figure 95 — Fatigue life assessment of inclined penny-shaped crack.
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6.5.3 Crack growth analysis of prism with edge crack under cyclic tensile load

The third application of this chapter comprises a fatigue analysis of a prism with edge
crack under cyclic tensile load. The geometry and boundary conditions are presented in fig. 96,
which are similar to the application in section 5.5.4. The cyclic load at the prism upper and
lower faces assumes opin = OPa and opax = 1.0Pa. In addition, the material properties are
E = 100.0Pa and v = 0.0 for the Young modulus and Poisson ratio. The isogeometric mesh
consists of the same discretisation as shown in fig. 70(b). The enrichment strategy adopted at
lateral faces is only the Heaviside function, which enables the use of a continuous mesh in these
faces and using localised modification of the corresponding coefficients during crack propagation
analysis. The Paris constants are C' = 10~'3 and m = 2.6 in which the units are associated with
the units for AK and da/dN to be Pa m®® and m/cycle. The crack growth increment in this
analysis is Aa = 0.384615m and the analysis stops after 3 propagation steps.

Figure 96 — Geometry and boundary conditions of prism with edge crack under cyclic
tensile load.
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Source: The author.

This application focuses on the Heaviside function capacity in representing strong dis-
continuities in a crack growth scenario. Then, for simplicity, the crack advances in an uniform
manner so that the next crack front is parallel to the previous. This allows a comparison of the
numerical responses with the reference response for plane strain given by Tada, Paris and Irwin
(2000), according to eq. (5.36). In this sense, fig. 97 presents the total displacements for each
propagation step, which is a consistent displacement field during the whole analysis. Figure 98
presents the SIF K for each propagation step and directly extracted from the solution vector.
In all steps, the numerical response is in agreement with the reference in the central region of
the prism. At z = 3.75m, the relative difference between the XIGABEM K and the reference is
1.25%, 3.08%, 3.09%, and 0.41%, for steps 0, 1, 2, and 3, respectively. Besides, K;; and Kjf
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remain below 4.10~8, which is expected from a pure mode analysis. Finally, fig. 99 presents a
comparison of the fatigue life using the reference response in eq. (6.4) and the life cycle using the
numerical SIFs. All these results attest for the success of the Heaviside enrichment in capturing

the opening along the lateral faces without re-meshing them.
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Figure 97 — Deformed shape of prism with edge crack under cyclic tensile load in all
propagation steps.
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Figure 98 — Prism with edge crack under cyclic tensile load: K; through propagation steps.
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Figure 99 — Prism with edge crack under cyclic tensile load: fatigue life.
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6.5.4 Hook under cyclic loading

The third application of this study involves the fatigue analysis of a hook under loading
service with an initial crack near its threaded notch. The geometry presented in fig. 100 contains
various curved surfaces, which suggests an isogeometric three-dimensional formulation would be
appropriate to analyse this problem efficiently. The notched region is common in crane hooks, and
it normally induces stress concentration regions that become fatigue crack initiation sites. This
behaviour aligns with the experimental results of fatigue propagation in a crane hook as studied
by Kishore et al. (Kishore et al., 2020) and shown in fig. 101. A uniformly distributed traction of
£ = 0.0 and " = —8.0 kN/cm? is applied to the grey region in fig. 100, which simulates
the service loading of this hook, while the surface at z; = 5.0cm has all displacements clamped.
The material properties are E = 20,000.00kN/cm? and v = 0.27 for the Young’s modulus and
Poisson ratio, and the fatigue properties are C = 4.107'2 and m = 2.7. The units of the Paris
constants consider AK and da/dN in kPa cm®® and cm/cycle. The fatigue analysis comprises 9
propagation steps and a Aapax = 0.2cm. The crack propagation follows the maximum hoop stress
criterion. This application serves as a benchmark for the capability of the proposed formulation

to represent real, complex-shaped geometries.

The isogeometric model shown in fig. 102(a) has 38 NURBS surfaces of degree p = ¢ = 2
defining the external boundary, while fig. 102(b) illustrates the crack description with four
NURBS surfaces of p = g = 2, each modelling one side of the crack. The control points, weights,
connectivity, and knot vectors are are provided in the supplementary material. The resulting
IGABEM model undergoes two uniform knot insertions in both parametric directions on the

notch and crack surfaces, resulting in a model with 738 collocation points, as shown in fig. 103.

Figure 104 presents the deformed shape of the hook under its maximum loading, con-
sidering different propagation steps and magnified 20 times. Step 0 represents the initial crack
configuration. The displaced shape aligns with the expected behaviour for this geometry, which
exhibits combined bending and tension. Additionally, the detailed view of the cracked region,
with displacement magnified 100 times, demonstrates a smooth field along the crack surfaces. A
gap in the external boundary mesh is evident at the intersection of this boundary with the crack
front. This is expected, as this region is modelled using two independent, unenriched NURBS
surfaces, with C~! continuity between them. This gap is expected to have only a mild effect
on the accuracy at the crack front since the enriched crack surfaces are responsible for SIF
computation. In fig. 105, the crack front is seen to propagate faster at the edges than at its
center, resulting in curvature loss during crack growth. The SIF distribution shown in fig. 106
for steps 0, 3, 6, and 9 indicates a dominant Mode I behaviour in this application. In addition,
the higher values of K; near the edges explain the faster crack growth in these regions compared
to the middle of the crack front. At later propagation steps, K becomes more uniform along the
front, however with higher values close to the edges. Finally, fig. 108 presents the fatigue life
assessment of the hook under cyclic loading as a benchmark result for the literature. In summary,
the XIGABEM formulation directly captures the SIFs; even for a complex geometry involving

both the external boundary and the crack, and successfully analyses an industrial configuration.
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Figure 100 — Geometry of hook with initial crack, dimensions in cm.
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Location of failure marked in a
new hook: from thread near step

Figure 101 — Fatigue crack location in crane hook experiment (Kishore et al., 2020).

Figure 102 — Isogeometric model of hook with crack.
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Figure 103 — Collocation points position for the XIGABEM model of hook with crack.
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Deformed shape of the hook

Zoom at the threaded region
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Figure 104 — Deformed shape of a crane hook under cyclic loading when the load reaches
its maximum value for different crack steps.
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Figure 105 — Crack front evolution at the plane x; = 2.5 due to the cyclic loading on the

hook.



160

450 E‘ TTT T T TTT ‘E 45.0 E‘ L T 1T L L ‘E

40.0 - = 40.0 - =
(= 350} E = 35.0 | E
8 001 I:IEJ — g 3004 i

25.04 . I 25.0THOOoOoooO0 I
£ %g,g; Doopoo = 1loky, & %g.gg— 10K
— VB 112K — U E1VNe
= 100] | S = 100] | Il
»n 50| = »n 5.0} E

9066666666666 J0pannnnnnneg

0.0 10.0 20.0 30.0 40.0 0.0 10.0 20.0 30.0 40.0
0 (degrees) 0 (degrees)
(a) Step 0 (b) Step 3

45.0 pr— 1 2(5)8[\\\

40.0 | . U mE
= 3500 il = 4001 000000000
@ 30.0 | DOO0OoooooO @ 35.0 | -

25.0 | |{|B & 3001 ||D A
£ 200) 1|0k £ 3000 Aok
= 15.0p 1|2 K ~ 150} 1A K1
5 5ol 51000

gﬁg YOOBOOOOODE gﬁgé@@‘@@@@@‘@ ¢
~770.0 10.0 20.0 30.0 40.0 ~770.0 10.0 20.0 30.0 40.0
0 (degrees) 0 (degrees)
(c) Step 6 (d) Step 9

Figure 106 — Stress Intensity Factors’ distribution along crack front during fatigue propa-
gation on hook.
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6.6 Partial conclusions

This chapter presents the high-cycle fatigue modelling of three-dimensional crack configu-
rations with the XIGABEM. This formulation allows for the fatigue assessment of complex crack
geometries, in which use of isogeometric basis functions is made for their accurate representation
during propagation. In addition, the enrichment strategy gives rise to several advantages for the
efficient determination of the mechanical solution throughout the incremental analysis with a
small number of degrees of freedom. The enrichment functions introduce interpolation parameters
that allow for the direct and accurate determination of the SIFs, which dismisses demanding
post-processing tasks. Two crack growth criteria define the direction in which the crack advances:
the hoop stress criterion and the Schollmann criterion. While the former has been applied in
several research works using IGABEM for crack propagation analysis, this thesis promotes the
first application of the latter. In addition, the Schollmann criterion includes the influence of
mode III behaviour on the propagation angle. This study also proposes a novel strategy for the
determination of the updated crack front, allowing for the NURBS curve weights to adjust during
the crack growth. Also, the multi-patch modelling of the crack surfaces involves a fine-tuning
algorithm for guaranteeing the required continuity between independent surfaces. Furthermore,
the fatigue life assessment considers a linear interpolation of the SIFs in the Paris-Erdogan Law,
permitting the use of larger crack increment lengths. Numerical applications have demonstrated
that the formulation obtains accurate values for the SIFs during the whole crack growth process.
This is particularly advantageous because the exponential behaviour contained in the Paris-
Erdogan Law results in the accumulation of errors if a high level of accuracy in SIFs is not

maintained.
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7 FINAL REMARKS

This thesis proposed enrichment strategies for the isogeometric boundary element method
in three-dimensional linear elastic fracture mechanics and linear fatigue analysis. Then, the
eXtended Isogeometric Boundary Element Method was used for the numerical analysis of 3-D
cracked bodies. Initially, this study focused on the incorporation of trimmed surfaces into the
IGABEM formulation, to enable the analysis of more complex geometries without altering their
original CAD models. However, this coupling had some limitations and it was not extended
to cracked bodies. Subsequently, this study addressed the XIGABEM formulation for three-
dimensional fracture and fatigue analysis. Two different enrichment functions were proposed for
the first time within the 3-D IGABEM framework: the Heaviside function and the Williams
solution-based function. The Heaviside enrichment represented strong discontinuities eliminating
the need for mesh alignment between the external boundary and the crack. Furthermore, the
Williams solution introduced the asymptotic behaviour to enriched patches. When applied to the
external boundary, it can also introduce strong discontinuities. Its application to crack surfaces
allowed the direct extraction of Stress Intensity Factors, eliminating the need for post-processing
tasks. Finally, the XIGABEM formulation was coupled with a fatigue crack growth framework

to model crack propagation under high-cycle loading condition.

In chapter 3, the incorporation of trimmed surfaces into the IGABEM enabled the direct
import of original CAD models. This is advantageous because standard IGABEM formulations
rely on the NURBS surface representation without accounting for trimming curves, which are
common in CAD models. The method was successful in representing the mechanical behaviour
of two numerical applications. The first application used the proposed collocation scheme for
the singular version of the IGABEM with trimmed surfaces demonstrating the convergence
behaviour of displacements as the number of integration points increases. The second application
illustrated the capability of the trimmed IGABEM formulation to represent a more complex
geometry, with circular details that are exactly represented by NURBS surfaces, as well as with
two trimming curves at each end. However, the singular version of the trimmed IGABEM did
not yield accurate results, which highlights a need for further investigation of this strategy.
Moreover, implementation challenges in generalising this strategy prevented its application to

cracked industrial components in this thesis. This provides scope for future studies.

Chapter 4 presented the Heaviside enrichment proposition for representing strong discon-
tinuities in surfaces at the external boundary intersected by cracks. This provides an advantage by
eliminating the mesh alignment requirement along the intersection, which facilitates the seamless
integration of cracks into CAD models. As the numerical results have demonstrated, this strategy
accurately represented the jump in the displacement field in the XIGABEM framework for a
variety of crossed knot-spans, which demonstrated the effectiveness of the numerical integration
of sub-cells and each strategy for supplementary equations. Additionally, this approach yields

accurate results with fewer degrees of freedom in comparison to equivalent IGABEM models.
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Notably, this approach introduced a novel contribution to three-dimensional IGABEM.

In chapter 5, the Williams solution-based enrichment function incorporated the asymptotic
behaviour of fracture mechanics into the IGABEM framework. Its application to intersected faces
enables the representation of the strong discontinuity induced by the crack, as the Heaviside
enrichment does, while adding the V7t term in the displacement solution. When this strategy
expands the displacement approximation of crack surfaces, the additional unknowns serve as
interpolation parameters for the SIFs along the crack front. This represented a significant
contribution of this thesis, since this enrichment eliminated the need for post-processing tasks in
SIF assessment. For the SIF enrichment, a tying constraint equation was responsible for obtaining
the supplementary equations to recover a square algebraic system. Furthermore, these equations
enabled the XIGABEM formulation to remove a non-physical displacement discontinuity at the
crack front that occurs in the Lagrangian BEM and IGABEM. Results indicated that XIGABEM
exhibits an improved convergence rate compared to the standard IGABEM in various applications.
Besides, the condition number growth did not jeopardise the overall quality of the numerical
responses. In addition, it was possible to accurately extract the SIFs for problems containing
straight and curved crack fronts directly using the additional unknowns introduced by crack
front enrichment. The comparison with results from the literature also demonstrated improved

accuracy in SIF determination.

The developments in chapter 6 involved applying the XIGABEM framework for the
fatigue life assessment of three-dimensional components. The enrichment strategy eliminated the
need for post-processing tasks by transforming the SIF parameters into system unknowns, which
were directly solved along with the mechanical fields. The fatigue life assessment involved an
alternative form of the Paris-Erdogan Law that enables larger crack growth increments while
maintaining accuracy. The crack growth analysis considered two different criteria: the hoop stress
criterion and the Schollmann criterion. While the former did not account for mode IIT in the
crack propagation angle, the latter incorporated its effects. Additionally, this study proposed a
novel strategy to define the updated crack front, which relied on a Least-Squares fitting approach
that allowed the control point weights to vary during propagation. This is advantageous because
it provides a better representation of curved fronts. Three numerical applications demonstrated
the effectiveness of the XIGABEM formulation in computing the life cycle of different crack
geometries subjected to pure mode and mixed-mode loading conditions. The accuracy of the
SIF computation was demonstrated by the agreement between the obtained numerical results
and reference solutions. Additionally, the XIGABEM formulation can model crack growth when
the crack intersects the external boundary without requiring re-meshing, which is a significant

advantage.

Finally, it is remarking the contributions of this thesis for the state of the art of the
three-dimensional IGABEM formulations, as it introduces new scope of capabilities of the method

by the enrichment approach.
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7.1 Recommendations for future work

Firstly, this study addresses the incorporation of trimmed surfaces into the IGABEM
to model more complex CAD geometries. This analysis yielded suitable results, yet for limited
applications. In this context, further improvements are necessary to extend the capabilities of
IGABEM. Applying global approaches to trimmed surfaces is one possible direction, as well as
proper treatment of the trimming effect. Additionally, developing a general strategy to define the
sub-cells on crossed knot spans is an important research aspect. Moreover, exploring alternative

collocation strategies for trimmed patches in IGABEM is also a worthwhile topic.

This doctoral thesis extends the enrichment approach to three-dimensional fracture
mechanics within the IGABEM framework for the first time. Naturally, the pioneering nature
of this work allows for various enhancements both in the formulation and in new applications.
For instance, the XIGABEM can be applied to other classes of problems, such as eliminating
the need for re-meshing in the intersection between an interface and the external boundary
in non-homogeneous materials. In this case, the step function could capture the derivative
discontinuity in displacements at the external face in a manner analogous to how the Heaviside

function captures the displacement jump in fracture mechanics.

There is room for improvement in the Heaviside enrichment. This study proposes an
initial approach within the IGABEM formulation, and its extension to higher-order NURBS
functions is a natural progression. To this end, alternative Heaviside functions, such as the linear
Heaviside function, can serve this purpose. Consequently, blending elements emerge, and their

proper treatment represents a significant advancement for XIGABEM.

The Williams solution-based enrichment strategy has been successful for problems in
linear elastic fracture mechanics and fatigue analysis. Therefore, its extension to anisotropic
problems could be considered. The main modification would involve adding more terms from the
Williams solution to the enrichment function. Another aspect of investigation is its localisation to
regions near the crack tip. This would reduce the computational cost associated with enriching
the entire NURBS surface. In addition, mixed-mode crack propagation when the external crack

intersects the external boundary is also a natural extension of this study.

In the context of fatigue crack growth, investigating the low-cycle fatigue phenomenon
using the XIGABEM formulation is of great interest. In such cases, overload scenarios can extend
the component’s life cycle. Conducting this analysis within a three-dimensional framework would

be beneficial for industrial applications.

Lastly, this study presents the XIGABEM formulation based on the collocation version of
BEM. Since enrichment strategies in this type of formulation do not introduce additional equations
to accommodate the enrichment parameters, alternative strategies to recover a square system
become a challenge in this context. On the other hand, Galerkin-based approaches naturally
introduce additional equations for the enrichment parameters, which circumvents this issue.
Therefore, extending the enrichment propositions to the Symmetric Galerkin BEM (SGBEM)

would constitute another contribution to the state of the art in computational mechanics.
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APPENDIX A - B-SPLINES AND NURBS REPRESENTATION OF CURVES
AND SURFACES

Computer-Aided Design (CAD) models utilize functions such as Bézier curves, Splines,
and NURBS to describe complex geometries with high accuracy and few parameters when
compared to the polynomial representation. In this sense, the isogeometric approach consists of
using the same basis functions as the CAD models for the numerical analysis, which eliminates the
mesh generation task of traditional numerical approaches relying on the polynomial approximation.
Since this work uses the isogeometric approach of the BEM, this appendix presents the concepts
and definitions about the parametric representation of curves and surfaces using B-Splines and
NURBS basis functions, which can be found in Piegl and Tiller (1996).

A.1 B-Splines curves

A B-spline curve is a piecewise parametric curve throughout a space in which the
separation between segments occurs from a break-point defined as a knot. The knot ordering in
a non-decreasing vector results in the knot vector = = {&;, &, ..., &}, in which each segment
[€i;&i+1) is a knot-span. The control points are the geometric parameters that permit the curve

description in the R? or R? physical spaces as:

Ci(€) = 3. Nu(©)! (A1)

in which C} represents the j-th direction coordinate of an arbitrary point on the curve associated
with the £ parametric coordinate, N; is the i-th B-Spline basis function and a:; denotes the j-th
direction of the i-th control point. The B-Spline curve possesses a p degree and an amount of n
control points. An example of a B-spline curve is shown in fig. 109, having p = 2, n =7 and a
knot vector = = {0.0;0.0;0.0;0.3;0.5;0.7;0.7; 1.0; 1.0; 1.0}. In addition, the knot multiplicity of
2 at the knot 0.7 results in the curve being C° at this knot.

This study applies the recursive formulae of Cox-de Boor (Cox, 1972; Boor, 1972; Boor,
1978) for the B-Spline basis function calculation because they are the most practical form for
computational approaches. In this sense, the equation for N; ,, the basis function corresponding

to the ¢-th control point in a curve of degree p is:

1 &< i
Nw@:{ & < €< i

0 otherwise (42)
-G Civpr1 — &
N’i = 7]\]@ _ —N’L B
* © Sivp — & et &)+ Sivpr1 — &it1 +1,p—1 €3

The recursive aspect of eq. (A.2) requires the basis function computing for all degrees
prior to p. On the other hand, the B-Spline basis functions have local support, that arise from

the p = 0 step function format. As a consequence, only the basis functions {N;_,,, ..., N;,} are
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Figure 109 — B-Spline curve representation: control points, segments and knots

NG (2;4)

--- Control polygon
e Control point

B knot
Source: The author.

non-zero for a given knot § such that §; < & < §;41. This property enables reducing the number
of calls for the previous basis functions in the recursive equation. Other notable properties
of the B-Splines basis functions are their non-negativity, and Partition of Unity. Additionally,
N p is infinitely differentiable (C*°) inside its support and CP~% at the knot, being z the knot
multiplicity. In this study, all knot vectors are always open, or non-periodic. This characteristic

causes a knot multiplicity of p 4+ 1 in both knot vector ends.

The B-spline basis function derivative performs an important role in the definition of
other geometrical entities, such as normal and tangent vector, as well as in the numerical method

context. The obtaining of the d-th derivative of N, is also recursive, being:

(d—1) (d—1)
NO = [ Mot N (A.3)
“p Sivp — & Citp+1 — &it1

It is worth mentioning that a 0/0 term is common in the computing of both eq. (A.2)

and eq. (A.3). In these situations, the procedure continues by assuming that 0/0 = 0.
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A.2 NURBS curves

The construction of a NURBS curve derives from open B-Spline curves in which each
control point receives a weight w;. This new parameter becomes part of the curve definition, which
is now defined by the division between two functions. In this sense, the parametric representation
of a NURBS curve is:

= zn: Ri(§)P; (A.4)

in which all variables are similar to the ones in eq. (A.2). Also, the degree p is omitted in all

other expressions. The NURBS curve basis function R;(§) takes its rational form as:

(A.5)

The relevance of the NURBS basis functions derivatives is analogous to that of the
B-Spline counterparts. The d-th derivative of R;(&) is:

where:

d d!
( ¢ ) T 0(d—0)! (A7)

All the properties of B-Spline curves are present in NURBS curves, such as non-negativity,
local support, and Partition of Unity. Additionally, NURBS curves are capable of exactly

representing complex geometries as circles, spheres, and cones, among others.

A.3 NURBS surfaces

The NURBS surface parametrization consists of a bi-variate representation resulting from
a tensor product of two univariate NURBS curves. Then, by taking two uni-variate NURBS curves,
the first having basis functions N with degree p, number of basis functions n and knot-vector

== {511, ..., ?ﬂ’ﬂ} in & direction and the second with basis functions M with degree ¢,

number of basis function m and knot-vector Zo = {5%, £2,..., 5 +q+1} in the & direction, the

parametric approximation of a point x; is expressed as:

Jzk(&1,62) = i ba (€1, &) By (A.8)

a=1
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and the corresponding bi-variate NURBS basis function ¢,, is:

¢a(§17€2): _ ]xl(él)M](§2)wl] (Ag)

> > Ni(&) My (§2)wap

k=11=1

in which « refers to the NURBS surface local index associated to the indices ¢ and j of each
univariate NURBS function, and wj;; is the corresponding weight. Once NURBS surfaces derive
from NURBS curves, they possess the notable properties mentioned for these curves. Figure 110

presents a NURBS surface representation and its corresponding parametric space.

Figure 110 — NURBS surface.
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Source: Adapted from Cottrell, Hughes and Reali (2007).

The tensor product between the knot vectors of each parametric direction =; and =9
generates a two-dimensional region in the parametric space such that each portion [¢}, i“] X
[{%, g“] is a knot span of the NURBS surface. In the IGABEM, the numerical integration takes
place at each of these portions. Additionally, the knot insertion procedure is the equivalent in
Isogeometric Analysis for the h-refinement, in which each knot vector of each univariate NURBS
curve receives additional knots. This operation increases the amount of control points for the
parametric representation, which is also responsible for increasing the amount of degrees of
freedom and improving the numerical response precision. The convergence analyses of this study

apply the knot insertion strategy.

A.4 Trimmed NURBS

The parametrisation of NURBS surfaces results from the tensor product of two uni-variate
NURBS curves, and they typically represent large portions with four sides, or three when two
edges collapse into one. However, CAD models often describe complex geometries with arbitrary
topology, including holes and specific geometric details. Describing these surfaces using standard
NURBS surfaces requires several patches. Alternatively, trimming allows the representation of
these geometries with fewer patches by removing portions that do not belong to the model. For
this purpose, trimming NURBS curves C'"(t) define the limits of the parametrisation. These
curves have their own parametric space and knot vector, and their control points lie within the

parametric space of the NURBS surface.
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A closed set of trimming curves defines the removed or retained portion of the original
NURBS surface. A set of trimming curves is classified as either inner or outer, depending on
whether the removed portion is internal or external to the set, respectively. Consequently, the
trimming operation introduces a classification of the basis functions and their corresponding
control points into three categories: complete, trimmed, and void, as shown in fig. 111.. Complete
basis functions are those whose support remains unaffected by trimming, while trimmed basis
functions have the trimming curve within their support. Lastly, void basis functions are not
crossed by any trimming curve, but their entire support is removed from the model. For void

basis functions, the corresponding control point is unnecessary for the geometric description.

Figure 111 — Types of basis functions for trimmed surfaces.

Complete NURBS
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Source: The author.
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APPENDIX B - GEOMETRICAL DATA OF ELLIPTICAL CRACK UNDER
CRACK GROWTH

This appendix provides the geometrical data associated to the modelling of the coarse

mesh of the section 6.5.1. Table 12 provides the control points coordinates and weights. Patches

1 to 6 have p = ¢ = 1, with their corresponding knot vector being =1 = Z9 = {0,0,1,1}. All

other patches have p = ¢ = 2 and their knot vector are =; = E9 = {0,0,0, 1,1, 1}. Table 13 refers

to the control point connectivity in each patch. The first 8 control points and the first 6 patches

represent the prism.

Table 12 — Control points and weights for the coarse mesh of the elliptical crack modelling

of section 6.5.1.

Control point T T9 T3 w
1 -24.0000 | -48.0000 | 16.0000 | 1.00000000
2 24.0000 | -48.0000 | 16.0000 | 1.00000000
3 -24.0000 | 48.0000 | 16.0000 | 1.00000000
4 24.0000 | 48.0000 | 16.0000 | 1.00000000
5 24.0000 | 48.0000 | -16.0000 | 1.00000000
6 24.0000 | -48.0000 | -16.0000 | 1.00000000
7 -24.0000 | -48.0000 | -16.0000 | 1.00000000
8 -24.0000 | 48.0000 | -16.0000 | 1.00000000
9 0.0000 0.0000 1.6000 | 1.00000000
10 2.4000 0.0000 1.6000 | 0.70710678
11 2.4000 0.0000 0.0000 | 1.00000000
12 -2.4000 | 0.0000 1.6000 | 0.70710678
13 0.0000 0.0000 0.0000 | 0.41421356
14 2.4000 0.0000 | -1.6000 | 0.70710678
15 -2.4000 | 0.0000 0.0000 | 1.00000000
16 -2.4000 | 0.0000 | -1.6000 | 0.70710678
17 0.0000 0.0000 | -1.6000 | 1.00000000
18 0.0000 0.0000 | -1.8000 | 1.00000000
19 0.0000 0.0000 | -2.0000 | 1.00000000
20 -2.7000 | 0.0000 | -1.8000 | 0.70710678
21 -3.0000 | 0.0000 | -2.0000 | 0.70710678
22 -2.7000 | 0.0000 0.0000 | 1.00000000
23 -3.0000 | 0.0000 0.0000 | 1.00000000
24 2.7000 0.0000 | -1.8000 | 0.70710678
25 2.7000 0.0000 0.0000 | 1.00000000
26 3.0000 0.0000 | -2.0000 | 0.70710678
27 3.0000 0.0000 0.0000 | 1.00000000
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Table 12 — Control points and weights for the coarse mesh of the elliptical crack modelling

of section 6.5.1.

Control point T T9 T3 w
28 0.0000 0.0000 1.8000 | 1.00000000
29 -2.7000 0.0000 1.8000 | 0.70710678
30 0.0000 0.0000 2.0000 | 1.00000000
31 -3.0000 0.0000 2.0000 | 0.70710678
32 2.7000 0.0000 1.8000 | 0.70710678
33 3.0000 0.0000 2.0000 | 0.70710678
34 0.0000 0.0000 1.6000 | 1.00000000
35 -2.4000 0.0000 1.6000 | 0.70710678
36 -2.4000 0.0000 0.0000 | 1.00000000
37 2.4000 0.0000 1.6000 | 0.70710678
38 0.0000 0.0000 0.0000 | 0.41421356
39 -2.4000 0.0000 -1.6000 | 0.70710678
40 2.4000 0.0000 0.0000 | 1.00000000
41 2.4000 0.0000 -1.6000 | 0.70710678
42 0.0000 0.0000 -1.6000 | 1.00000000
43 0.0000 0.0000 1.8000 | 1.00000000
44 2.7000 0.0000 1.8000 | 0.70710678
45 2.7000 0.0000 0.0000 | 1.00000000
46 0.0000 0.0000 2.0000 | 1.00000000
47 3.0000 0.0000 2.0000 | 0.70710678
48 3.0000 0.0000 0.0000 | 1.00000000
49 -2.7000 0.0000 1.8000 | 0.70710678
50 -3.0000 0.0000 2.0000 | 0.70710678
51 -2.7000 0.0000 0.0000 | 1.00000000
52 -3.0000 0.0000 0.0000 | 1.00000000
53 0.0000 0.0000 -1.8000 | 1.00000000
54 0.0000 0.0000 -2.0000 | 1.00000000
55 2.7000 0.0000 -1.8000 | 0.70710678
56 3.0000 0.0000 -2.0000 | 0.70710678
57 -2.7000 0.0000 -1.8000 | 0.70710678
58 -3.0000 0.0000 -2.0000 | 0.70710678

Source: The author.
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Table 13 — Connectivity of the elliptical crack model of section 6.5.1.
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